富士通 A64FX 架构上的高通量药物发现

Filippo Barbari, F. Ficarelli, Daniele Cesarini
{"title":"富士通 A64FX 架构上的高通量药物发现","authors":"Filippo Barbari, F. Ficarelli, Daniele Cesarini","doi":"10.1145/3636480.3637095","DOIUrl":null,"url":null,"abstract":"High-performance computational kernels that optimally exploit modern vector-capable processors are critical in running large-scale drug discovery campaigns efficiently and promptly compatible with the constraints posed by urgent computing needs. Yet, state-of-the-art virtual screening workflows focus either on the broadness of features provided to the drug researcher or performance on high-throughput accelerators, leaving the task of deploying efficient CPU kernels to the compiler. We ported the key parts of the LiGen drug discovery pipeline, based on molecular docking, to the Fujitsu A64FX platform and leveraged its vector processing capabilities via an industry-proven retargetable SIMD programming model. By rethinking and optimizing key geometrical docking algorithms to leverage SVE instructions, we are able to provide efficient, high throughput execution on SVE-capable platforms.","PeriodicalId":120904,"journal":{"name":"Proceedings of the International Conference on High Performance Computing in Asia-Pacific Region Workshops","volume":"4 11","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-throughput drug discovery on the Fujitsu A64FX architecture\",\"authors\":\"Filippo Barbari, F. Ficarelli, Daniele Cesarini\",\"doi\":\"10.1145/3636480.3637095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High-performance computational kernels that optimally exploit modern vector-capable processors are critical in running large-scale drug discovery campaigns efficiently and promptly compatible with the constraints posed by urgent computing needs. Yet, state-of-the-art virtual screening workflows focus either on the broadness of features provided to the drug researcher or performance on high-throughput accelerators, leaving the task of deploying efficient CPU kernels to the compiler. We ported the key parts of the LiGen drug discovery pipeline, based on molecular docking, to the Fujitsu A64FX platform and leveraged its vector processing capabilities via an industry-proven retargetable SIMD programming model. By rethinking and optimizing key geometrical docking algorithms to leverage SVE instructions, we are able to provide efficient, high throughput execution on SVE-capable platforms.\",\"PeriodicalId\":120904,\"journal\":{\"name\":\"Proceedings of the International Conference on High Performance Computing in Asia-Pacific Region Workshops\",\"volume\":\"4 11\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the International Conference on High Performance Computing in Asia-Pacific Region Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3636480.3637095\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Conference on High Performance Computing in Asia-Pacific Region Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3636480.3637095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

高性能计算内核可优化利用现代矢量处理器,这对于高效、及时地运行大规模药物发现活动,并与紧迫的计算需求所带来的限制相匹配至关重要。然而,最先进的虚拟筛选工作流程要么侧重于为药物研究人员提供广泛的功能,要么侧重于高通量加速器上的性能,而将部署高效 CPU 内核的任务留给了编译器。我们将基于分子对接的 LiGen 药物发现流水线的关键部分移植到富士通 A64FX 平台,并通过业界公认的可重目标 SIMD 编程模型利用其矢量处理能力。通过重新思考和优化关键的几何对接算法以利用 SVE 指令,我们能够在支持 SVE 的平台上提供高效、高吞吐量的执行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
High-throughput drug discovery on the Fujitsu A64FX architecture
High-performance computational kernels that optimally exploit modern vector-capable processors are critical in running large-scale drug discovery campaigns efficiently and promptly compatible with the constraints posed by urgent computing needs. Yet, state-of-the-art virtual screening workflows focus either on the broadness of features provided to the drug researcher or performance on high-throughput accelerators, leaving the task of deploying efficient CPU kernels to the compiler. We ported the key parts of the LiGen drug discovery pipeline, based on molecular docking, to the Fujitsu A64FX platform and leveraged its vector processing capabilities via an industry-proven retargetable SIMD programming model. By rethinking and optimizing key geometrical docking algorithms to leverage SVE instructions, we are able to provide efficient, high throughput execution on SVE-capable platforms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Introducing software pipelining for the A64FX processor into LLVM Performance Evaluation of the Fourth-Generation Xeon with Different Memory Characteristics An Overview on Mixing MPI and OpenMP Dependent Tasking on A64FX Optimize Efficiency of Utilizing Systems by Dynamic Core Binding MPI-Adapter2: An Automatic ABI Translation Library Builder for MPI Application Binary Portability
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1