用于低对比度医学图像分割的 δARD 损失

Yu Zhao, Xiaoyan Shen, Jiadong Chen, Wei Qian, He Ma, Liang Sang
{"title":"用于低对比度医学图像分割的 δARD 损失","authors":"Yu Zhao, Xiaoyan Shen, Jiadong Chen, Wei Qian, He Ma, Liang Sang","doi":"10.1088/2632-2153/ad1d06","DOIUrl":null,"url":null,"abstract":"\n Purpose Medical image segmentation is essential to image-based disease analysis and has proven to be significantly helpful for doctors to make decisions. Due to the low-contrast of some medical images, the accurate segmentation of medical images has always been a challenging problem. The experiment found that UNet with current loss functions cannot capture subtle information in target contours or regions in low-contrast medical images, which are crucial for subsequent disease diagnosis. Methods We propose a robust loss by incorporating the difference in average radial derivative (ARD), length and region area to further help the network to achieve more accurate segmentation results. We evaluated the proposed loss function using UNet as the base segmentation network compared to five conventional loss functions on one private and four public medical image datasets. Results Experimental results illustrate that UNet with the proposed loss function can achieve the best segmentation performance, even better than the outstanding deep learning models with original loss functions. Furthermore, three representative datasets were chosen to validate the effectiveness of the proposed δARD loss function with seven different models. Conclusion The experiments revealed δARD loss's plug-and-play feature and its robustness over multiple models and datasets.","PeriodicalId":503691,"journal":{"name":"Machine Learning: Science and Technology","volume":"4 12","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"δARD loss for low-contrast medical image segmentation\",\"authors\":\"Yu Zhao, Xiaoyan Shen, Jiadong Chen, Wei Qian, He Ma, Liang Sang\",\"doi\":\"10.1088/2632-2153/ad1d06\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Purpose Medical image segmentation is essential to image-based disease analysis and has proven to be significantly helpful for doctors to make decisions. Due to the low-contrast of some medical images, the accurate segmentation of medical images has always been a challenging problem. The experiment found that UNet with current loss functions cannot capture subtle information in target contours or regions in low-contrast medical images, which are crucial for subsequent disease diagnosis. Methods We propose a robust loss by incorporating the difference in average radial derivative (ARD), length and region area to further help the network to achieve more accurate segmentation results. We evaluated the proposed loss function using UNet as the base segmentation network compared to five conventional loss functions on one private and four public medical image datasets. Results Experimental results illustrate that UNet with the proposed loss function can achieve the best segmentation performance, even better than the outstanding deep learning models with original loss functions. Furthermore, three representative datasets were chosen to validate the effectiveness of the proposed δARD loss function with seven different models. Conclusion The experiments revealed δARD loss's plug-and-play feature and its robustness over multiple models and datasets.\",\"PeriodicalId\":503691,\"journal\":{\"name\":\"Machine Learning: Science and Technology\",\"volume\":\"4 12\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machine Learning: Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2632-2153/ad1d06\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Learning: Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2632-2153/ad1d06","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目的 医学影像分割对于基于图像的疾病分析至关重要,事实证明,医学影像分割大大有助于医生做出决策。由于某些医学图像对比度较低,准确分割医学图像一直是一个具有挑战性的问题。实验发现,目前使用损失函数的 UNet 无法捕捉低对比度医学图像中目标轮廓或区域的细微信息,而这些信息对于后续的疾病诊断至关重要。方法 我们提出了一种稳健的损失函数,它结合了平均径向导数(ARD)、长度和区域面积的差异,进一步帮助网络获得更精确的分割结果。我们使用 UNet 作为基础分割网络,在一个私人和四个公共医疗图像数据集上对所提出的损失函数与五个传统损失函数进行了评估。结果 实验结果表明,使用所提损失函数的 UNet 可以获得最佳的分割性能,甚至优于使用原始损失函数的优秀深度学习模型。此外,还选择了三个具有代表性的数据集来验证所提出的 δARD 损失函数与七个不同模型的有效性。结论 实验揭示了δARD 损失函数即插即用的特点及其在多种模型和数据集上的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
δARD loss for low-contrast medical image segmentation
Purpose Medical image segmentation is essential to image-based disease analysis and has proven to be significantly helpful for doctors to make decisions. Due to the low-contrast of some medical images, the accurate segmentation of medical images has always been a challenging problem. The experiment found that UNet with current loss functions cannot capture subtle information in target contours or regions in low-contrast medical images, which are crucial for subsequent disease diagnosis. Methods We propose a robust loss by incorporating the difference in average radial derivative (ARD), length and region area to further help the network to achieve more accurate segmentation results. We evaluated the proposed loss function using UNet as the base segmentation network compared to five conventional loss functions on one private and four public medical image datasets. Results Experimental results illustrate that UNet with the proposed loss function can achieve the best segmentation performance, even better than the outstanding deep learning models with original loss functions. Furthermore, three representative datasets were chosen to validate the effectiveness of the proposed δARD loss function with seven different models. Conclusion The experiments revealed δARD loss's plug-and-play feature and its robustness over multiple models and datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On the Benefit of Attention in Inverse Design of Thin Films Filters Predictive Models for Inorganic Materials Thermoelectric Properties with Machine Learning Benchmarking machine learning interatomic potentials via phonon anharmonicity Application of Deep Learning-based Fuzzy Systems to Analyze the Overall Risk of Mortality in Glioblastoma Multiforme Formation Energy Prediction of Neutral Single-Atom Impurities in 2D Materials using Tree-based Machine Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1