Fatima Zohra Behar, S. Meskine, Abdelkader Boukortt, Abdesamed Benbedra
{"title":"Mg2X(X = Si、Ge 和 Sn)化合物对极端单轴压缩的响应:第一原理计算","authors":"Fatima Zohra Behar, S. Meskine, Abdelkader Boukortt, Abdesamed Benbedra","doi":"10.1088/1361-651x/ad1ce0","DOIUrl":null,"url":null,"abstract":"\n In this study, we perform first-principles calculations using density functional theory to examine the structural, electronic, thermodynamic, and thermoelectric properties of the Mg2X (X = Si, Ge and Sn) compounds under uniaxial compression within the generalized gradient and modified Beck-Johnson approximations. It is found that the band gap of Mg2Si, Mg2Ge and Mg2Sn decreases with applied uniaxial pressure and changes its direction from Г-Х to Г-К. The results of phonon frequencies indicate that the studied compounds are dynamically stable at zero and higher uniaxial strains. Furthermore, the uniaxial compression and temperature dependence of the Gibbs free energy, heat capacity and thermal expansion coefficient are investigated in the frame of the quasi-harmonic approximation. The semiclassical-Boltzmann method is used to study the Seebeck coefficient, electrical conductivity, thermal conductivity and figure of merit ZT as a function of both temperature and uniaxial pressure. It is shown that the Seebeck coefficient decreases with increasing pressure whereas thermal conductivity increases, which leads to the lowering in the value of ZT and thus to a worse thermoelectric performance of the studied materials.","PeriodicalId":18648,"journal":{"name":"Modelling and Simulation in Materials Science and Engineering","volume":"5 3","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Response of Mg2X (X = Si, Ge and Sn) compounds to extreme uniaxial compression: first-principles calculations\",\"authors\":\"Fatima Zohra Behar, S. Meskine, Abdelkader Boukortt, Abdesamed Benbedra\",\"doi\":\"10.1088/1361-651x/ad1ce0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In this study, we perform first-principles calculations using density functional theory to examine the structural, electronic, thermodynamic, and thermoelectric properties of the Mg2X (X = Si, Ge and Sn) compounds under uniaxial compression within the generalized gradient and modified Beck-Johnson approximations. It is found that the band gap of Mg2Si, Mg2Ge and Mg2Sn decreases with applied uniaxial pressure and changes its direction from Г-Х to Г-К. The results of phonon frequencies indicate that the studied compounds are dynamically stable at zero and higher uniaxial strains. Furthermore, the uniaxial compression and temperature dependence of the Gibbs free energy, heat capacity and thermal expansion coefficient are investigated in the frame of the quasi-harmonic approximation. The semiclassical-Boltzmann method is used to study the Seebeck coefficient, electrical conductivity, thermal conductivity and figure of merit ZT as a function of both temperature and uniaxial pressure. It is shown that the Seebeck coefficient decreases with increasing pressure whereas thermal conductivity increases, which leads to the lowering in the value of ZT and thus to a worse thermoelectric performance of the studied materials.\",\"PeriodicalId\":18648,\"journal\":{\"name\":\"Modelling and Simulation in Materials Science and Engineering\",\"volume\":\"5 3\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Modelling and Simulation in Materials Science and Engineering\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-651x/ad1ce0\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modelling and Simulation in Materials Science and Engineering","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-651x/ad1ce0","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Response of Mg2X (X = Si, Ge and Sn) compounds to extreme uniaxial compression: first-principles calculations
In this study, we perform first-principles calculations using density functional theory to examine the structural, electronic, thermodynamic, and thermoelectric properties of the Mg2X (X = Si, Ge and Sn) compounds under uniaxial compression within the generalized gradient and modified Beck-Johnson approximations. It is found that the band gap of Mg2Si, Mg2Ge and Mg2Sn decreases with applied uniaxial pressure and changes its direction from Г-Х to Г-К. The results of phonon frequencies indicate that the studied compounds are dynamically stable at zero and higher uniaxial strains. Furthermore, the uniaxial compression and temperature dependence of the Gibbs free energy, heat capacity and thermal expansion coefficient are investigated in the frame of the quasi-harmonic approximation. The semiclassical-Boltzmann method is used to study the Seebeck coefficient, electrical conductivity, thermal conductivity and figure of merit ZT as a function of both temperature and uniaxial pressure. It is shown that the Seebeck coefficient decreases with increasing pressure whereas thermal conductivity increases, which leads to the lowering in the value of ZT and thus to a worse thermoelectric performance of the studied materials.
期刊介绍:
Serving the multidisciplinary materials community, the journal aims to publish new research work that advances the understanding and prediction of material behaviour at scales from atomistic to macroscopic through modelling and simulation.
Subject coverage:
Modelling and/or simulation across materials science that emphasizes fundamental materials issues advancing the understanding and prediction of material behaviour. Interdisciplinary research that tackles challenging and complex materials problems where the governing phenomena may span different scales of materials behaviour, with an emphasis on the development of quantitative approaches to explain and predict experimental observations. Material processing that advances the fundamental materials science and engineering underpinning the connection between processing and properties. Covering all classes of materials, and mechanical, microstructural, electronic, chemical, biological, and optical properties.