{"title":"激光烧结聚酰胺-12 表面的影响机理研究","authors":"James Tarver, Kieran Nar, Candice Majewski","doi":"10.1108/rpj-09-2023-0317","DOIUrl":null,"url":null,"abstract":"\nPurpose\nThe purpose of this paper is to elucidate the extent to which the mechanisms of polymer melt viscous flow and finish layer powder particle adhesion influence the top surface topographies of laser sintered polyamide (PA12) components.\n\n\nDesign/methodology/approach\nLaser sintered specimens were manufactured at varying laser parameters in accordance with a full factorial design of experiments. Focus variation microscopy was used to ascertain insight into their top surface heights and peak/valley distributions. Subsequently, regression expressions were generated to model the former with respect to applied laser parameters. Auxiliary experimental analysis was also performed to validate the proposed mechanisms and statistical models.\n\n\nFindings\nWithin the parameter range tested, this work found the root mean square (Sq) and skewness (Ssk) roughness responses of laser sintered PA12 top surfaces to be inversely related to one another, and both also principally influenced by beam spacing. Furthermore, it was demonstrated that using optimised laser parameters (to promote polymer melt dispersion) and building without finish layers (to avert subsequent powder particle adhesion) reduced the mean Sq roughness of resultant topographies by 30.8% and 47.9% relative to standard laser sintered PA12 top surfaces, respectively.\n\n\nPractical implications\nThe scope to which laser sintered PA12 top surfaces can be modified was highlighted.\n\n\nOriginality/value\nThis research demonstrated the impact the mechanisms of polymer melt viscous flow and finish layer powder particle adhesion have on laser sintered PA12 top surfaces.\n","PeriodicalId":20981,"journal":{"name":"Rapid Prototyping Journal","volume":"38 19","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An investigation into the mechanisms that influence laser sintered polyamide-12 top surfaces\",\"authors\":\"James Tarver, Kieran Nar, Candice Majewski\",\"doi\":\"10.1108/rpj-09-2023-0317\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nPurpose\\nThe purpose of this paper is to elucidate the extent to which the mechanisms of polymer melt viscous flow and finish layer powder particle adhesion influence the top surface topographies of laser sintered polyamide (PA12) components.\\n\\n\\nDesign/methodology/approach\\nLaser sintered specimens were manufactured at varying laser parameters in accordance with a full factorial design of experiments. Focus variation microscopy was used to ascertain insight into their top surface heights and peak/valley distributions. Subsequently, regression expressions were generated to model the former with respect to applied laser parameters. Auxiliary experimental analysis was also performed to validate the proposed mechanisms and statistical models.\\n\\n\\nFindings\\nWithin the parameter range tested, this work found the root mean square (Sq) and skewness (Ssk) roughness responses of laser sintered PA12 top surfaces to be inversely related to one another, and both also principally influenced by beam spacing. Furthermore, it was demonstrated that using optimised laser parameters (to promote polymer melt dispersion) and building without finish layers (to avert subsequent powder particle adhesion) reduced the mean Sq roughness of resultant topographies by 30.8% and 47.9% relative to standard laser sintered PA12 top surfaces, respectively.\\n\\n\\nPractical implications\\nThe scope to which laser sintered PA12 top surfaces can be modified was highlighted.\\n\\n\\nOriginality/value\\nThis research demonstrated the impact the mechanisms of polymer melt viscous flow and finish layer powder particle adhesion have on laser sintered PA12 top surfaces.\\n\",\"PeriodicalId\":20981,\"journal\":{\"name\":\"Rapid Prototyping Journal\",\"volume\":\"38 19\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rapid Prototyping Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1108/rpj-09-2023-0317\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rapid Prototyping Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1108/rpj-09-2023-0317","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
An investigation into the mechanisms that influence laser sintered polyamide-12 top surfaces
Purpose
The purpose of this paper is to elucidate the extent to which the mechanisms of polymer melt viscous flow and finish layer powder particle adhesion influence the top surface topographies of laser sintered polyamide (PA12) components.
Design/methodology/approach
Laser sintered specimens were manufactured at varying laser parameters in accordance with a full factorial design of experiments. Focus variation microscopy was used to ascertain insight into their top surface heights and peak/valley distributions. Subsequently, regression expressions were generated to model the former with respect to applied laser parameters. Auxiliary experimental analysis was also performed to validate the proposed mechanisms and statistical models.
Findings
Within the parameter range tested, this work found the root mean square (Sq) and skewness (Ssk) roughness responses of laser sintered PA12 top surfaces to be inversely related to one another, and both also principally influenced by beam spacing. Furthermore, it was demonstrated that using optimised laser parameters (to promote polymer melt dispersion) and building without finish layers (to avert subsequent powder particle adhesion) reduced the mean Sq roughness of resultant topographies by 30.8% and 47.9% relative to standard laser sintered PA12 top surfaces, respectively.
Practical implications
The scope to which laser sintered PA12 top surfaces can be modified was highlighted.
Originality/value
This research demonstrated the impact the mechanisms of polymer melt viscous flow and finish layer powder particle adhesion have on laser sintered PA12 top surfaces.
期刊介绍:
Rapid Prototyping Journal concentrates on development in a manufacturing environment but covers applications in other areas, such as medicine and construction. All papers published in this field are scattered over a wide range of international publications, none of which actually specializes in this particular discipline, this journal is a vital resource for anyone involved in additive manufacturing. It draws together important refereed papers on all aspects of AM from distinguished sources all over the world, to give a truly international perspective on this dynamic and exciting area.
-Benchmarking – certification and qualification in AM-
Mass customisation in AM-
Design for AM-
Materials aspects-
Reviews of processes/applications-
CAD and other software aspects-
Enhancement of existing processes-
Integration with design process-
Management implications-
New AM processes-
Novel applications of AM parts-
AM for tooling-
Medical applications-
Reverse engineering in relation to AM-
Additive & Subtractive hybrid manufacturing-
Industrialisation