{"title":"企业破产预测模型:希腊建筑行业比较研究","authors":"K. Toudas, S. Archontakis, P. Boufounou","doi":"10.3390/computation12010009","DOIUrl":null,"url":null,"abstract":"This study focuses on testing the efficiency of alternative bankruptcy prediction models (Altman, Ohlson, Zmijewski) and on assessing the possible reasons that led to the confirmation or not of the prevailing model. Data from financial statements of listed (Greek) construction companies before the economic crisis were utilized. The results showed that Altman’s main predictive model as well as the revised models have low overall predictability for all three years before bankruptcy.","PeriodicalId":52148,"journal":{"name":"Computation","volume":"119 4","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Corporate Bankruptcy Prediction Models: A Comparative Study for the Construction Sector in Greece\",\"authors\":\"K. Toudas, S. Archontakis, P. Boufounou\",\"doi\":\"10.3390/computation12010009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study focuses on testing the efficiency of alternative bankruptcy prediction models (Altman, Ohlson, Zmijewski) and on assessing the possible reasons that led to the confirmation or not of the prevailing model. Data from financial statements of listed (Greek) construction companies before the economic crisis were utilized. The results showed that Altman’s main predictive model as well as the revised models have low overall predictability for all three years before bankruptcy.\",\"PeriodicalId\":52148,\"journal\":{\"name\":\"Computation\",\"volume\":\"119 4\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/computation12010009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/computation12010009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Corporate Bankruptcy Prediction Models: A Comparative Study for the Construction Sector in Greece
This study focuses on testing the efficiency of alternative bankruptcy prediction models (Altman, Ohlson, Zmijewski) and on assessing the possible reasons that led to the confirmation or not of the prevailing model. Data from financial statements of listed (Greek) construction companies before the economic crisis were utilized. The results showed that Altman’s main predictive model as well as the revised models have low overall predictability for all three years before bankruptcy.
期刊介绍:
Computation a journal of computational science and engineering. Topics: computational biology, including, but not limited to: bioinformatics mathematical modeling, simulation and prediction of nucleic acid (DNA/RNA) and protein sequences, structure and functions mathematical modeling of pathways and genetic interactions neuroscience computation including neural modeling, brain theory and neural networks computational chemistry, including, but not limited to: new theories and methodology including their applications in molecular dynamics computation of electronic structure density functional theory designing and characterization of materials with computation method computation in engineering, including, but not limited to: new theories, methodology and the application of computational fluid dynamics (CFD) optimisation techniques and/or application of optimisation to multidisciplinary systems system identification and reduced order modelling of engineering systems parallel algorithms and high performance computing in engineering.