基于高光谱成像测定收获前猕猴桃的干物质含量

Han Yang, Qian Chen, Jianping Qian, Jiali Li, Xintao Lin, Zihan Liu, Nana Fan, Wei Ma
{"title":"基于高光谱成像测定收获前猕猴桃的干物质含量","authors":"Han Yang, Qian Chen, Jianping Qian, Jiali Li, Xintao Lin, Zihan Liu, Nana Fan, Wei Ma","doi":"10.3390/agriengineering6010004","DOIUrl":null,"url":null,"abstract":"Determining pre-harvest fruit maturity is vital to ensure the quality of kiwifruit, and dry-matter content is an important indicator of kiwifruit ripeness. To predict the pre-harvest dry-matter content of kiwifruit continuously in real-time with high accuracy, this study uses hyperspectral data of pre-harvest Jintao kiwifruit obtained by using a hyperspectral image acquisition device. The raw data underwent whiteboard correction, spectral data extraction, spectral pre-processing, and feature-band extraction, following which the dry-matter content of the fruit was predicted by using partial least squares (PLS) regression. The feature bands extracted by the random frog method were 538.93, 671.14, 693.41, 770.61, 796.98, 813.24, 841.21, 843.29, and 856.80 nm, which improve the accuracy of the PLS method for predicting dry-matter content, with R2 = 0.92 and a root mean square error (RMSE) of 0.41% for the training set, and R2 = 0.85 and a RMSE of 0.50% for the test set. These results show that the proposed method reduces the number of required bands while maintaining the prediction accuracy, thereby demonstrating the reliability of using hyperspectral data to predict the pre-harvest dry-matter content of kiwifruit. This method can effectively guide the management of kiwifruit harvesting period, establishing a theoretical foundation for precise unmanned harvesting.","PeriodicalId":7846,"journal":{"name":"AgriEngineering","volume":"12 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Determination of Dry-Matter Content of Kiwifruit before Harvest Based on Hyperspectral Imaging\",\"authors\":\"Han Yang, Qian Chen, Jianping Qian, Jiali Li, Xintao Lin, Zihan Liu, Nana Fan, Wei Ma\",\"doi\":\"10.3390/agriengineering6010004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Determining pre-harvest fruit maturity is vital to ensure the quality of kiwifruit, and dry-matter content is an important indicator of kiwifruit ripeness. To predict the pre-harvest dry-matter content of kiwifruit continuously in real-time with high accuracy, this study uses hyperspectral data of pre-harvest Jintao kiwifruit obtained by using a hyperspectral image acquisition device. The raw data underwent whiteboard correction, spectral data extraction, spectral pre-processing, and feature-band extraction, following which the dry-matter content of the fruit was predicted by using partial least squares (PLS) regression. The feature bands extracted by the random frog method were 538.93, 671.14, 693.41, 770.61, 796.98, 813.24, 841.21, 843.29, and 856.80 nm, which improve the accuracy of the PLS method for predicting dry-matter content, with R2 = 0.92 and a root mean square error (RMSE) of 0.41% for the training set, and R2 = 0.85 and a RMSE of 0.50% for the test set. These results show that the proposed method reduces the number of required bands while maintaining the prediction accuracy, thereby demonstrating the reliability of using hyperspectral data to predict the pre-harvest dry-matter content of kiwifruit. This method can effectively guide the management of kiwifruit harvesting period, establishing a theoretical foundation for precise unmanned harvesting.\",\"PeriodicalId\":7846,\"journal\":{\"name\":\"AgriEngineering\",\"volume\":\"12 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AgriEngineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/agriengineering6010004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AgriEngineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/agriengineering6010004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

确定采收前果实的成熟度对确保猕猴桃的质量至关重要,而干物质含量是猕猴桃成熟度的重要指标。为了连续、实时、高精度地预测猕猴桃采收前的干物质含量,本研究使用了高光谱图像采集设备获取的金淘猕猴桃采收前的高光谱数据。原始数据经过白板校正、光谱数据提取、光谱预处理和特征波段提取后,使用偏最小二乘法(PLS)回归预测果实的干物质含量。随机蛙法提取的特征带分别为 538.93、671.14、693.41、770.61、796.98、813.24、841.21、843.29 和 856.80 nm,提高了 PLS 方法预测干物质含量的准确性,训练集的 R2 = 0.92,均方根误差 (RMSE) 为 0.41%,测试集的 R2 = 0.85,均方根误差 (RMSE) 为 0.50%。这些结果表明,所提出的方法在保持预测准确性的同时减少了所需波段的数量,从而证明了使用高光谱数据预测猕猴桃采收前干物质含量的可靠性。该方法能有效指导猕猴桃采收期的管理,为精准无人采收奠定了理论基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Determination of Dry-Matter Content of Kiwifruit before Harvest Based on Hyperspectral Imaging
Determining pre-harvest fruit maturity is vital to ensure the quality of kiwifruit, and dry-matter content is an important indicator of kiwifruit ripeness. To predict the pre-harvest dry-matter content of kiwifruit continuously in real-time with high accuracy, this study uses hyperspectral data of pre-harvest Jintao kiwifruit obtained by using a hyperspectral image acquisition device. The raw data underwent whiteboard correction, spectral data extraction, spectral pre-processing, and feature-band extraction, following which the dry-matter content of the fruit was predicted by using partial least squares (PLS) regression. The feature bands extracted by the random frog method were 538.93, 671.14, 693.41, 770.61, 796.98, 813.24, 841.21, 843.29, and 856.80 nm, which improve the accuracy of the PLS method for predicting dry-matter content, with R2 = 0.92 and a root mean square error (RMSE) of 0.41% for the training set, and R2 = 0.85 and a RMSE of 0.50% for the test set. These results show that the proposed method reduces the number of required bands while maintaining the prediction accuracy, thereby demonstrating the reliability of using hyperspectral data to predict the pre-harvest dry-matter content of kiwifruit. This method can effectively guide the management of kiwifruit harvesting period, establishing a theoretical foundation for precise unmanned harvesting.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.70
自引率
0.00%
发文量
0
期刊最新文献
An Integrated Engineering Method for Improving Air Quality of Cage-Free Hen Housing Optimizing Deep Learning Algorithms for Effective Chicken Tracking through Image Processing Integrating Actuator Fault-Tolerant Control and Deep-Learning-Based NDVI Estimation for Precision Agriculture with a Hexacopter UAV Usability Testing of Novel IoT-Infused Digital Services on Farm Equipment Reveals Farmer’s Requirements towards Future Human–Machine Interface Design Guidelines Chemical Control of Coffee Berry Borer Using Unmanned Aerial Vehicle under Different Operating Conditions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1