考虑到机械和/或水文效应的榕树加固斜坡的稳定性

IF 2.4 2区 农林科学 Q1 FORESTRY Forests Pub Date : 2024-01-08 DOI:10.3390/f15010133
Changbing Qin, Rui Wang, Wenkang Chen, Yusha Shi, Haixiu Sun, Jianjun Tang, Luqi Wang
{"title":"考虑到机械和/或水文效应的榕树加固斜坡的稳定性","authors":"Changbing Qin, Rui Wang, Wenkang Chen, Yusha Shi, Haixiu Sun, Jianjun Tang, Luqi Wang","doi":"10.3390/f15010133","DOIUrl":null,"url":null,"abstract":"Vegetation reinforcement for slopes has been recognized as an environment-friendly measure and has been widely adopted in engineering practice. However, the stability analysis of vegetation reinforcement for slopes has mainly been discussed for an infinite slope and common grass and scrub plant species. This study proposes a procedure for analyzing the stability of a finite slope reinforced with Ficus virens under transpiration and rainfall conditions. A simplified empirical model for characterizing root cohesion and triaxial testing is utilized to quantify the mechanical effect of roots on rooted soil shear strength. A numerical modeling technique with COMSOL Multiphysics is used to investigate the hydrological effect of roots. The combination of these two effects forms an expression for the unsaturated shear strength of rooted soils. The stability of a vegetated soil slope is then investigated in terms of safety factors and failure mechanisms, with/without considering rainfall. The results show that the stability solutions without consideration of the roots’ mechanical and/or hydrological effects are overly conservative. The hydrological contribution to slope stability could also be partially preserved under short-term rainfall, and as rainfall continues, the hydrological effect is weakened, while the mechanical reinforcement is assumed to be unchanged. In the meantime, the hydrological contribution to slope stability is susceptible to atmospheric conditions, which indicates a favorable effect on water uptake and an adverse consequence for water infiltration.","PeriodicalId":12339,"journal":{"name":"Forests","volume":"18 24","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability of Ficus virens-Reinforced Slopes Considering Mechanical and/or Hydrological Effects\",\"authors\":\"Changbing Qin, Rui Wang, Wenkang Chen, Yusha Shi, Haixiu Sun, Jianjun Tang, Luqi Wang\",\"doi\":\"10.3390/f15010133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vegetation reinforcement for slopes has been recognized as an environment-friendly measure and has been widely adopted in engineering practice. However, the stability analysis of vegetation reinforcement for slopes has mainly been discussed for an infinite slope and common grass and scrub plant species. This study proposes a procedure for analyzing the stability of a finite slope reinforced with Ficus virens under transpiration and rainfall conditions. A simplified empirical model for characterizing root cohesion and triaxial testing is utilized to quantify the mechanical effect of roots on rooted soil shear strength. A numerical modeling technique with COMSOL Multiphysics is used to investigate the hydrological effect of roots. The combination of these two effects forms an expression for the unsaturated shear strength of rooted soils. The stability of a vegetated soil slope is then investigated in terms of safety factors and failure mechanisms, with/without considering rainfall. The results show that the stability solutions without consideration of the roots’ mechanical and/or hydrological effects are overly conservative. The hydrological contribution to slope stability could also be partially preserved under short-term rainfall, and as rainfall continues, the hydrological effect is weakened, while the mechanical reinforcement is assumed to be unchanged. In the meantime, the hydrological contribution to slope stability is susceptible to atmospheric conditions, which indicates a favorable effect on water uptake and an adverse consequence for water infiltration.\",\"PeriodicalId\":12339,\"journal\":{\"name\":\"Forests\",\"volume\":\"18 24\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forests\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.3390/f15010133\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forests","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/f15010133","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0

摘要

植被加固边坡已被视为一种环保措施,并在工程实践中被广泛采用。然而,植被加固边坡的稳定性分析主要针对无限边坡和常见的草地和灌木丛植物物种进行讨论。本研究提出了一种程序,用于分析在蒸腾和降雨条件下用榕树加固的有限斜坡的稳定性。利用一个简化的经验模型来描述根系的内聚力,并通过三轴测试来量化根系对根系土壤剪切强度的机械影响。利用 COMSOL Multiphysics 数值建模技术研究了根的水文效应。这两种效应的结合形成了根系土壤非饱和剪切强度的表达式。然后,从安全系数和破坏机制的角度研究了植被土壤斜坡的稳定性,包括考虑降雨和不考虑降雨的情况。结果表明,不考虑根系的机械和/或水文效应的稳定性解决方案过于保守。在短期降雨的情况下,水文作用对边坡稳定性的贡献还能部分保持,而随着降雨的持续,水文作用会减弱,而机械加固作用假定不变。同时,水文作用对边坡稳定性的影响易受大气条件的影响,这表明水文作用对吸水有利,而对渗水不利。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Stability of Ficus virens-Reinforced Slopes Considering Mechanical and/or Hydrological Effects
Vegetation reinforcement for slopes has been recognized as an environment-friendly measure and has been widely adopted in engineering practice. However, the stability analysis of vegetation reinforcement for slopes has mainly been discussed for an infinite slope and common grass and scrub plant species. This study proposes a procedure for analyzing the stability of a finite slope reinforced with Ficus virens under transpiration and rainfall conditions. A simplified empirical model for characterizing root cohesion and triaxial testing is utilized to quantify the mechanical effect of roots on rooted soil shear strength. A numerical modeling technique with COMSOL Multiphysics is used to investigate the hydrological effect of roots. The combination of these two effects forms an expression for the unsaturated shear strength of rooted soils. The stability of a vegetated soil slope is then investigated in terms of safety factors and failure mechanisms, with/without considering rainfall. The results show that the stability solutions without consideration of the roots’ mechanical and/or hydrological effects are overly conservative. The hydrological contribution to slope stability could also be partially preserved under short-term rainfall, and as rainfall continues, the hydrological effect is weakened, while the mechanical reinforcement is assumed to be unchanged. In the meantime, the hydrological contribution to slope stability is susceptible to atmospheric conditions, which indicates a favorable effect on water uptake and an adverse consequence for water infiltration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Forests
Forests FORESTRY-
CiteScore
4.40
自引率
17.20%
发文量
1823
审稿时长
19.02 days
期刊介绍: Forests (ISSN 1999-4907) is an international and cross-disciplinary scholarly journal of forestry and forest ecology. It publishes research papers, short communications and review papers. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles.
期刊最新文献
Long-Term Patterns in Forest Soil CO2 Flux in a Pacific Northwest Temperate Rainforest Assessment of Climate Change and Land Use/Land Cover Effects on Aralia elata Habitat Suitability in Northeastern China Determination of the Static Bending Properties of Green Beech and Oak Wood by the Frequency Resonance Technique Variations in Physiological and Biochemical Characteristics of Kalidium foliatum Leaves and Roots in Two Saline Habitats in Desert Region Wildfires’ Effect on Soil Properties and Bacterial Biodiversity of Postpyrogenic Histic Podzols (Middle Taiga, Komi Republic)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1