Clayton R.S. Sasaki, Angela K. Rowe, L. McMurdie, A. Varble, Zhixiao Zhang
{"title":"利用对流许可模拟南美低空喷流对阿根廷中部对流环境的影响","authors":"Clayton R.S. Sasaki, Angela K. Rowe, L. McMurdie, A. Varble, Zhixiao Zhang","doi":"10.1175/mwr-d-23-0122.1","DOIUrl":null,"url":null,"abstract":"\nThis study documents the spatial and temporal distribution of the South American low-level jet (SALLJ) and quantifies its impact on the convective environment using a 6.5-month convection-permitting simulation during the Remote Sensing of Electrification, Lightning, And Mesoscale/Microscale Processes with Adaptive Ground Observations and Clouds, Aerosols, and Complex Terrain Interactions (RELAMPAGO-CACTI) campaigns. Overall, the simulation reproduces the observed SALLJ characteristics in Central Argentina near the Sierras de Córdoba (SDC), a focal point for terrain-focused upscale growth. SALLJs most frequently occur in the summer with maxima to the northwest and east of the SDC and minima over the higher terrain. The shallower SALLJs (< 1750 m) have a strong overnight skew, while the elevated jets are more equally spread throughout the day. SALLJ periods often have higher amounts of low-level moisture and instability compared to non-SALLJ periods, with these impacts increasing over time when the SALLJ is present and decreasing afterwards. The SALLJ may enhance low-level wind shear magnitudes (particularly when accounting for the jet height); however, enhancement is somewhat limited due to the presence of speed shear in most situations. SALLJ periods are associated with low-level directional shear favorable for organized convection and an orientation of cloud-layer wind shear parallel to the terrain, which could favor upscale growth. A case study is shown where the SALLJ influenced both the magnitude and direction of wind shear concurrent with convective upscale growth near the SDC. This study highlights the complex relationship between the SALLJ and its impacts during periods of widespread convection.","PeriodicalId":18824,"journal":{"name":"Monthly Weather Review","volume":"20 4","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influences of the South American Low-Level Jet on the Convective Environment in Central Argentina using a Convection-Permitting Simulation\",\"authors\":\"Clayton R.S. Sasaki, Angela K. Rowe, L. McMurdie, A. Varble, Zhixiao Zhang\",\"doi\":\"10.1175/mwr-d-23-0122.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nThis study documents the spatial and temporal distribution of the South American low-level jet (SALLJ) and quantifies its impact on the convective environment using a 6.5-month convection-permitting simulation during the Remote Sensing of Electrification, Lightning, And Mesoscale/Microscale Processes with Adaptive Ground Observations and Clouds, Aerosols, and Complex Terrain Interactions (RELAMPAGO-CACTI) campaigns. Overall, the simulation reproduces the observed SALLJ characteristics in Central Argentina near the Sierras de Córdoba (SDC), a focal point for terrain-focused upscale growth. SALLJs most frequently occur in the summer with maxima to the northwest and east of the SDC and minima over the higher terrain. The shallower SALLJs (< 1750 m) have a strong overnight skew, while the elevated jets are more equally spread throughout the day. SALLJ periods often have higher amounts of low-level moisture and instability compared to non-SALLJ periods, with these impacts increasing over time when the SALLJ is present and decreasing afterwards. The SALLJ may enhance low-level wind shear magnitudes (particularly when accounting for the jet height); however, enhancement is somewhat limited due to the presence of speed shear in most situations. SALLJ periods are associated with low-level directional shear favorable for organized convection and an orientation of cloud-layer wind shear parallel to the terrain, which could favor upscale growth. A case study is shown where the SALLJ influenced both the magnitude and direction of wind shear concurrent with convective upscale growth near the SDC. This study highlights the complex relationship between the SALLJ and its impacts during periods of widespread convection.\",\"PeriodicalId\":18824,\"journal\":{\"name\":\"Monthly Weather Review\",\"volume\":\"20 4\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Monthly Weather Review\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1175/mwr-d-23-0122.1\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monthly Weather Review","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1175/mwr-d-23-0122.1","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Influences of the South American Low-Level Jet on the Convective Environment in Central Argentina using a Convection-Permitting Simulation
This study documents the spatial and temporal distribution of the South American low-level jet (SALLJ) and quantifies its impact on the convective environment using a 6.5-month convection-permitting simulation during the Remote Sensing of Electrification, Lightning, And Mesoscale/Microscale Processes with Adaptive Ground Observations and Clouds, Aerosols, and Complex Terrain Interactions (RELAMPAGO-CACTI) campaigns. Overall, the simulation reproduces the observed SALLJ characteristics in Central Argentina near the Sierras de Córdoba (SDC), a focal point for terrain-focused upscale growth. SALLJs most frequently occur in the summer with maxima to the northwest and east of the SDC and minima over the higher terrain. The shallower SALLJs (< 1750 m) have a strong overnight skew, while the elevated jets are more equally spread throughout the day. SALLJ periods often have higher amounts of low-level moisture and instability compared to non-SALLJ periods, with these impacts increasing over time when the SALLJ is present and decreasing afterwards. The SALLJ may enhance low-level wind shear magnitudes (particularly when accounting for the jet height); however, enhancement is somewhat limited due to the presence of speed shear in most situations. SALLJ periods are associated with low-level directional shear favorable for organized convection and an orientation of cloud-layer wind shear parallel to the terrain, which could favor upscale growth. A case study is shown where the SALLJ influenced both the magnitude and direction of wind shear concurrent with convective upscale growth near the SDC. This study highlights the complex relationship between the SALLJ and its impacts during periods of widespread convection.
期刊介绍:
Monthly Weather Review (MWR) (ISSN: 0027-0644; eISSN: 1520-0493) publishes research relevant to the analysis and prediction of observed atmospheric circulations and physics, including technique development, data assimilation, model validation, and relevant case studies. This research includes numerical and data assimilation techniques that apply to the atmosphere and/or ocean environments. MWR also addresses phenomena having seasonal and subseasonal time scales.