Valery Bondur, T. Chimitdorzhiev, I. Kirbizhekova, Aleksey Dmitriev
{"title":"利用 PALSAR-1,2 和 Landsat-5,8 数据估算北方地区重新造林/植树造林的新方法","authors":"Valery Bondur, T. Chimitdorzhiev, I. Kirbizhekova, Aleksey Dmitriev","doi":"10.3390/f15010132","DOIUrl":null,"url":null,"abstract":"Nowadays, global remote sensing studies of tropical forest parameters are relevant for assessing carbon sequestration, whereas boreal forests receive little attention. This is due to the current idea that forests with greater aboveground biomass absorb more carbon. However, new research indicates that rapidly growing young forests take up more carbon than mature ones. Therefore, it is necessary to develop universal methods of remote reforestation/afforestation monitoring. The existing reforestation methods rely on the separate analysis of multispectral optical images and radar data. Here, we propose a method for analyzing the joint dynamics of NDVI (or the Normalized Burn Ratio, NBR) and the radar vegetation index (RVI) on a 2D plot for a test reforestation site. NDVI and NBR time series were derived from Landsat-5,8 data, and the RVI was derived from ALOS-1,2 and PALSAR-1,2 for 2007–2020 using the resources of Google Earth Engine. The quantitative parameters to evaluate the degree of reforestation and changes in the species composition of young trees have been suggested. The suggested method enables a more thorough evaluation of reforestation by measuring the coupled dynamics of the projective cover of young trees and aboveground biomass.","PeriodicalId":12339,"journal":{"name":"Forests","volume":"38 23","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Method of Boreal Zone Reforestation/Afforestation Estimation Using PALSAR-1,2 and Landsat-5,8 Data\",\"authors\":\"Valery Bondur, T. Chimitdorzhiev, I. Kirbizhekova, Aleksey Dmitriev\",\"doi\":\"10.3390/f15010132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nowadays, global remote sensing studies of tropical forest parameters are relevant for assessing carbon sequestration, whereas boreal forests receive little attention. This is due to the current idea that forests with greater aboveground biomass absorb more carbon. However, new research indicates that rapidly growing young forests take up more carbon than mature ones. Therefore, it is necessary to develop universal methods of remote reforestation/afforestation monitoring. The existing reforestation methods rely on the separate analysis of multispectral optical images and radar data. Here, we propose a method for analyzing the joint dynamics of NDVI (or the Normalized Burn Ratio, NBR) and the radar vegetation index (RVI) on a 2D plot for a test reforestation site. NDVI and NBR time series were derived from Landsat-5,8 data, and the RVI was derived from ALOS-1,2 and PALSAR-1,2 for 2007–2020 using the resources of Google Earth Engine. The quantitative parameters to evaluate the degree of reforestation and changes in the species composition of young trees have been suggested. The suggested method enables a more thorough evaluation of reforestation by measuring the coupled dynamics of the projective cover of young trees and aboveground biomass.\",\"PeriodicalId\":12339,\"journal\":{\"name\":\"Forests\",\"volume\":\"38 23\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forests\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.3390/f15010132\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forests","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/f15010132","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
A Novel Method of Boreal Zone Reforestation/Afforestation Estimation Using PALSAR-1,2 and Landsat-5,8 Data
Nowadays, global remote sensing studies of tropical forest parameters are relevant for assessing carbon sequestration, whereas boreal forests receive little attention. This is due to the current idea that forests with greater aboveground biomass absorb more carbon. However, new research indicates that rapidly growing young forests take up more carbon than mature ones. Therefore, it is necessary to develop universal methods of remote reforestation/afforestation monitoring. The existing reforestation methods rely on the separate analysis of multispectral optical images and radar data. Here, we propose a method for analyzing the joint dynamics of NDVI (or the Normalized Burn Ratio, NBR) and the radar vegetation index (RVI) on a 2D plot for a test reforestation site. NDVI and NBR time series were derived from Landsat-5,8 data, and the RVI was derived from ALOS-1,2 and PALSAR-1,2 for 2007–2020 using the resources of Google Earth Engine. The quantitative parameters to evaluate the degree of reforestation and changes in the species composition of young trees have been suggested. The suggested method enables a more thorough evaluation of reforestation by measuring the coupled dynamics of the projective cover of young trees and aboveground biomass.
期刊介绍:
Forests (ISSN 1999-4907) is an international and cross-disciplinary scholarly journal of forestry and forest ecology. It publishes research papers, short communications and review papers. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles.