基于脉动跟踪网络法的振荡水柱转子偏心压力脉动分析

IF 1.1 4区 工程技术 Q4 MECHANICS Journal of Applied Fluid Mechanics Pub Date : 2024-01-01 DOI:10.47176/jafm.17.3.2070
J. Lu, Q. Liu, Z. Lu, R. Tao, F. Jin, D. Zhu, R. Xiao
{"title":"基于脉动跟踪网络法的振荡水柱转子偏心压力脉动分析","authors":"J. Lu, Q. Liu, Z. Lu, R. Tao, F. Jin, D. Zhu, R. Xiao","doi":"10.47176/jafm.17.3.2070","DOIUrl":null,"url":null,"abstract":"An oscillating water column (OWC) is typical of axial rotor turbines, which are used to convert ocean wave energy into electrical energy. This device impacts downstream pressure pulsations when its rotor becomes eccentric. This study compared the details of pressure pulsations downstream of eccentric and non-eccentric rotors under three operating conditions: low flow A, high-efficiency flow B, and high flow C. Computational fluid dynamics (CFD) simulations based on the pulsation tracking network (PTN) method were used for the OWC device to compare the experimental results. The results indicate downstream pressure pulsations were mostly dominated by the blade frequency in non-eccentric low-flow cases. In the other eccentric operating conditions, downstream pressure pulsations were mainly dominated by the 2-, 3.6-, 6-, and 7-times rotation frequencies and the 0.5-times blade frequency. The phase change of downstream pressure pulsations in eccentric and non-eccentric conditions is consistent with the flow direction. The phase change is relatively uniform and steady before eccentricity and becomes turbulent after eccentricity, which affects its steadiness. In this study, the OWC device did not significantly change with or without rotor eccentricity at a 1-time blade frequency intensity; however, at a 1-time rotation frequency, the OWC device showed a significant increase in the pressure pulsation amplitude after rotor eccentricity. The study of the dominant frequency, amplitude, and phase of pressure pulsations in OWC devices with eccentric rotors can help prevent excessive pressure pulsations that can lead to incidents.","PeriodicalId":49041,"journal":{"name":"Journal of Applied Fluid Mechanics","volume":"95 9","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pressure Pulsation Analysis of Oscillating Water Column Rotor Eccentricity Based on the Pulsation Tracking Network Method\",\"authors\":\"J. Lu, Q. Liu, Z. Lu, R. Tao, F. Jin, D. Zhu, R. Xiao\",\"doi\":\"10.47176/jafm.17.3.2070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An oscillating water column (OWC) is typical of axial rotor turbines, which are used to convert ocean wave energy into electrical energy. This device impacts downstream pressure pulsations when its rotor becomes eccentric. This study compared the details of pressure pulsations downstream of eccentric and non-eccentric rotors under three operating conditions: low flow A, high-efficiency flow B, and high flow C. Computational fluid dynamics (CFD) simulations based on the pulsation tracking network (PTN) method were used for the OWC device to compare the experimental results. The results indicate downstream pressure pulsations were mostly dominated by the blade frequency in non-eccentric low-flow cases. In the other eccentric operating conditions, downstream pressure pulsations were mainly dominated by the 2-, 3.6-, 6-, and 7-times rotation frequencies and the 0.5-times blade frequency. The phase change of downstream pressure pulsations in eccentric and non-eccentric conditions is consistent with the flow direction. The phase change is relatively uniform and steady before eccentricity and becomes turbulent after eccentricity, which affects its steadiness. In this study, the OWC device did not significantly change with or without rotor eccentricity at a 1-time blade frequency intensity; however, at a 1-time rotation frequency, the OWC device showed a significant increase in the pressure pulsation amplitude after rotor eccentricity. The study of the dominant frequency, amplitude, and phase of pressure pulsations in OWC devices with eccentric rotors can help prevent excessive pressure pulsations that can lead to incidents.\",\"PeriodicalId\":49041,\"journal\":{\"name\":\"Journal of Applied Fluid Mechanics\",\"volume\":\"95 9\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Fluid Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.47176/jafm.17.3.2070\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.47176/jafm.17.3.2070","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

振荡水柱(OWC)是轴向转子涡轮机的典型特征,用于将海洋波浪能转化为电能。当转子偏心时,该设备会影响下游压力脉动。本研究比较了偏心转子和非偏心转子在三种运行条件(低流量 A、高效流量 B 和高流量 C)下的下游压力脉动细节。结果表明,在非偏心低流量情况下,下游压力脉动主要由叶片频率主导。在其他偏心工作条件下,下游压力脉动主要受 2 倍、3.6 倍、6 倍和 7 倍旋转频率以及 0.5 倍叶片频率的影响。在偏心和非偏心工况下,下游压力脉动的相位变化与流向一致。偏心前,相位变化相对均匀稳定,偏心后,相位变化变为湍流,影响了其稳定性。在本研究中,在 1 倍叶片频率强度下,OWC 设备在转子偏心与否的情况下没有明显变化;但在 1 倍旋转频率下,转子偏心后 OWC 设备的压力脉动幅值明显增加。对带有偏心转子的 OWC 设备中压力脉动的主导频率、振幅和相位进行研究,有助于防止压力脉动过大而导致事故。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Pressure Pulsation Analysis of Oscillating Water Column Rotor Eccentricity Based on the Pulsation Tracking Network Method
An oscillating water column (OWC) is typical of axial rotor turbines, which are used to convert ocean wave energy into electrical energy. This device impacts downstream pressure pulsations when its rotor becomes eccentric. This study compared the details of pressure pulsations downstream of eccentric and non-eccentric rotors under three operating conditions: low flow A, high-efficiency flow B, and high flow C. Computational fluid dynamics (CFD) simulations based on the pulsation tracking network (PTN) method were used for the OWC device to compare the experimental results. The results indicate downstream pressure pulsations were mostly dominated by the blade frequency in non-eccentric low-flow cases. In the other eccentric operating conditions, downstream pressure pulsations were mainly dominated by the 2-, 3.6-, 6-, and 7-times rotation frequencies and the 0.5-times blade frequency. The phase change of downstream pressure pulsations in eccentric and non-eccentric conditions is consistent with the flow direction. The phase change is relatively uniform and steady before eccentricity and becomes turbulent after eccentricity, which affects its steadiness. In this study, the OWC device did not significantly change with or without rotor eccentricity at a 1-time blade frequency intensity; however, at a 1-time rotation frequency, the OWC device showed a significant increase in the pressure pulsation amplitude after rotor eccentricity. The study of the dominant frequency, amplitude, and phase of pressure pulsations in OWC devices with eccentric rotors can help prevent excessive pressure pulsations that can lead to incidents.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Fluid Mechanics
Journal of Applied Fluid Mechanics THERMODYNAMICS-MECHANICS
CiteScore
2.00
自引率
20.00%
发文量
138
审稿时长
>12 weeks
期刊介绍: The Journal of Applied Fluid Mechanics (JAFM) is an international, peer-reviewed journal which covers a wide range of theoretical, numerical and experimental aspects in fluid mechanics. The emphasis is on the applications in different engineering fields rather than on pure mathematical or physical aspects in fluid mechanics. Although many high quality journals pertaining to different aspects of fluid mechanics presently exist, research in the field is rapidly escalating. The motivation for this new fluid mechanics journal is driven by the following points: (1) there is a need to have an e-journal accessible to all fluid mechanics researchers, (2) scientists from third- world countries need a venue that does not incur publication costs, (3) quality papers deserve rapid and fast publication through an efficient peer review process, and (4) an outlet is needed for rapid dissemination of fluid mechanics conferences held in Asian countries. Pertaining to this latter point, there presently exist some excellent conferences devoted to the promotion of fluid mechanics in the region such as the Asian Congress of Fluid Mechanics which began in 1980 and nominally takes place in one of the Asian countries every two years. We hope that the proposed journal provides and additional impetus for promoting applied fluids research and associated activities in this continent. The journal is under the umbrella of the Physics Society of Iran with the collaboration of Isfahan University of Technology (IUT) .
期刊最新文献
Scale Effects Investigation in Physical Modeling of Recirculating Shallow Flow Using Large Eddy Simulation Technique A Numerical Study on the Energy Dissipation Mechanisms of a Two-Stage Vertical Pump as Turbine Using Entropy Generation Theory Numerical Investigation of Oil–Air Flow Inside Tapered Roller Bearings with Oil Bath Lubrication Suppressing the Vortex Rope Oscillation and Pressure Fluctuations by the Air Admission in Propeller Hydro-Turbine Draft Tube Analysis of Near-wall Coherent Structure of Spiral Flow in Circular Pipe Based on Large Eddy Simulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1