经典氢同位素储存材料综述

Yang Liu , Zhiyi Yang , Panpan Zhou , Xuezhang Xiao , Jiacheng Qi , Jiapeng Bi , Xu Huang , Huaqin Kou , Lixin Chen
{"title":"经典氢同位素储存材料综述","authors":"Yang Liu ,&nbsp;Zhiyi Yang ,&nbsp;Panpan Zhou ,&nbsp;Xuezhang Xiao ,&nbsp;Jiacheng Qi ,&nbsp;Jiapeng Bi ,&nbsp;Xu Huang ,&nbsp;Huaqin Kou ,&nbsp;Lixin Chen","doi":"10.1016/j.matre.2024.100250","DOIUrl":null,"url":null,"abstract":"<div><p>Hydrogen storage alloys (HSAs) are attracting widespread interest in the nuclear industry because of the generation of stable metal hydrides after tritium absorption, thus effectively preventing the leakage of radioactive tritium. Commonly used HSAs in the hydrogen isotopes field are Zr<sub>2</sub>M (M = Co, Ni, Fe) alloys, metallic Pd, depleted U, and ZrCo alloy. Specifically, Zr<sub>2</sub>M (M = Co, Ni, Fe) alloys are considered promising tritium-getter materials, and metallic Pd is utilized to separate and purify hydrogen isotopes. Furthermore, depleted U and ZrCo alloy are well suited for storing and delivering hydrogen isotopes. Notably, all the aforementioned HSAs need to modulate their hydrogen storage properties for complex operating conditions. In this review, we present a comprehensive overview of the reported modification methods applied to the above alloys. Alloying is an effective amelioration method that mainly modulates the properties of HSAs by altering their local geometrical/electronic structures. Besides, microstructural modifications such as nano-sizing and nanopores have been used to increase the specific surface area and active sites of metallic Pd and ZrCo alloys for enhancing de-/hydrogenation kinetics. The combination of metallic Pd with support materials can significantly reduce the cost and enhance the pulverization resistance. Moreover, the poisoning resistance of ZrCo alloy is improved by constructing active surfaces with selective permeability. Overall, the review is constructive for better understanding the properties and mechanisms of hydrogen isotope storage alloys and provides effective guidance for future modification research.</p></div>","PeriodicalId":61638,"journal":{"name":"材料导报:能源(英文)","volume":"4 1","pages":"Article 100250"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666935824000028/pdfft?md5=9dd826c5eab76bb7340222adaa0ddeb8&pid=1-s2.0-S2666935824000028-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A review of classical hydrogen isotopes storage materials\",\"authors\":\"Yang Liu ,&nbsp;Zhiyi Yang ,&nbsp;Panpan Zhou ,&nbsp;Xuezhang Xiao ,&nbsp;Jiacheng Qi ,&nbsp;Jiapeng Bi ,&nbsp;Xu Huang ,&nbsp;Huaqin Kou ,&nbsp;Lixin Chen\",\"doi\":\"10.1016/j.matre.2024.100250\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Hydrogen storage alloys (HSAs) are attracting widespread interest in the nuclear industry because of the generation of stable metal hydrides after tritium absorption, thus effectively preventing the leakage of radioactive tritium. Commonly used HSAs in the hydrogen isotopes field are Zr<sub>2</sub>M (M = Co, Ni, Fe) alloys, metallic Pd, depleted U, and ZrCo alloy. Specifically, Zr<sub>2</sub>M (M = Co, Ni, Fe) alloys are considered promising tritium-getter materials, and metallic Pd is utilized to separate and purify hydrogen isotopes. Furthermore, depleted U and ZrCo alloy are well suited for storing and delivering hydrogen isotopes. Notably, all the aforementioned HSAs need to modulate their hydrogen storage properties for complex operating conditions. In this review, we present a comprehensive overview of the reported modification methods applied to the above alloys. Alloying is an effective amelioration method that mainly modulates the properties of HSAs by altering their local geometrical/electronic structures. Besides, microstructural modifications such as nano-sizing and nanopores have been used to increase the specific surface area and active sites of metallic Pd and ZrCo alloys for enhancing de-/hydrogenation kinetics. The combination of metallic Pd with support materials can significantly reduce the cost and enhance the pulverization resistance. Moreover, the poisoning resistance of ZrCo alloy is improved by constructing active surfaces with selective permeability. Overall, the review is constructive for better understanding the properties and mechanisms of hydrogen isotope storage alloys and provides effective guidance for future modification research.</p></div>\",\"PeriodicalId\":61638,\"journal\":{\"name\":\"材料导报:能源(英文)\",\"volume\":\"4 1\",\"pages\":\"Article 100250\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666935824000028/pdfft?md5=9dd826c5eab76bb7340222adaa0ddeb8&pid=1-s2.0-S2666935824000028-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"材料导报:能源(英文)\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666935824000028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"材料导报:能源(英文)","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666935824000028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

贮氢合金(HSAs)在吸收氚后能生成稳定的金属氢化物,从而有效防止放射性氚的泄漏,因此受到核工业的广泛关注。氢同位素领域常用的氢化物有 Zr2M(M = Co、Ni、Fe)合金、金属钯、贫化铀和 ZrCo 合金。具体来说,Zr2M(M = Co、Ni、Fe)合金被认为是很有前途的氚汲取材料,而金属钯则可用于分离和提纯氢同位素。此外,贫化铀和锆钴合金也非常适合储存和输送氢同位素。值得注意的是,上述所有 HSA 都需要在复杂的操作条件下调节其氢储存特性。在本综述中,我们将全面概述已报道的应用于上述合金的改性方法。合金化是一种有效的改良方法,主要通过改变氢氧化钠的局部几何/电子结构来调节其性能。此外,纳米尺寸和纳米孔等微结构改性也被用于增加金属钯和锆钴合金的比表面积和活性位点,以提高脱氢/加氢动力学。金属钯与支撑材料的结合可大大降低成本并增强抗粉碎性。此外,通过构建具有选择渗透性的活性表面,锆钴合金的抗中毒性也得到了改善。总之,该综述对更好地理解氢同位素贮存合金的性能和机理具有建设性意义,并为未来的改性研究提供了有效指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A review of classical hydrogen isotopes storage materials

Hydrogen storage alloys (HSAs) are attracting widespread interest in the nuclear industry because of the generation of stable metal hydrides after tritium absorption, thus effectively preventing the leakage of radioactive tritium. Commonly used HSAs in the hydrogen isotopes field are Zr2M (M = Co, Ni, Fe) alloys, metallic Pd, depleted U, and ZrCo alloy. Specifically, Zr2M (M = Co, Ni, Fe) alloys are considered promising tritium-getter materials, and metallic Pd is utilized to separate and purify hydrogen isotopes. Furthermore, depleted U and ZrCo alloy are well suited for storing and delivering hydrogen isotopes. Notably, all the aforementioned HSAs need to modulate their hydrogen storage properties for complex operating conditions. In this review, we present a comprehensive overview of the reported modification methods applied to the above alloys. Alloying is an effective amelioration method that mainly modulates the properties of HSAs by altering their local geometrical/electronic structures. Besides, microstructural modifications such as nano-sizing and nanopores have been used to increase the specific surface area and active sites of metallic Pd and ZrCo alloys for enhancing de-/hydrogenation kinetics. The combination of metallic Pd with support materials can significantly reduce the cost and enhance the pulverization resistance. Moreover, the poisoning resistance of ZrCo alloy is improved by constructing active surfaces with selective permeability. Overall, the review is constructive for better understanding the properties and mechanisms of hydrogen isotope storage alloys and provides effective guidance for future modification research.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
材料导报:能源(英文)
材料导报:能源(英文) Renewable Energy, Sustainability and the Environment, Nanotechnology
CiteScore
13.00
自引率
0.00%
发文量
0
审稿时长
50 days
期刊最新文献
Outside Front Cover Contents Advancements in biomass gasification and catalytic tar-cracking technologies Ionic buffer layer design for stabilizing Zn electrodes in aqueous Zn-based batteries Novel N-doped carbon nanotubes impregnated Mn spheres with polydopamine coating as an efficient polysulfide immobilizer for Li-S batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1