{"title":"稳健分布式时间敏感型应用的设计方法","authors":"Aviral Shrivastava, M. Khayatian, Bob Iannucci","doi":"10.1109/IOTM.001.2300048","DOIUrl":null,"url":null,"abstract":"Time has become an essential aspect of many computing systems where temporal correctness is as important as functional correctness. Autonomous vehicles, Industry 4.0, and smart grids are a few examples of time-sensitive systems. As time-sensitive applications become large, complex, and distributed, traditional methods fall short of achieving the desired orchestration among components. In this vision article, we first propose a standard to maintain an accurate notion of time among all components of the system, i.e., sensors, computing platforms, and actuators. Then, we propose explicit-time state estimation and closed-loop control algorithms that can tolerate large delays while achieving reasonable performance, and an integrated fail-safe mechanism that achieves a high level of robustness when timing failures happen.","PeriodicalId":235472,"journal":{"name":"IEEE Internet of Things Magazine","volume":"52 12","pages":"104-110"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design Methodology for Robust, Distributed Time-Sensitive Applications\",\"authors\":\"Aviral Shrivastava, M. Khayatian, Bob Iannucci\",\"doi\":\"10.1109/IOTM.001.2300048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Time has become an essential aspect of many computing systems where temporal correctness is as important as functional correctness. Autonomous vehicles, Industry 4.0, and smart grids are a few examples of time-sensitive systems. As time-sensitive applications become large, complex, and distributed, traditional methods fall short of achieving the desired orchestration among components. In this vision article, we first propose a standard to maintain an accurate notion of time among all components of the system, i.e., sensors, computing platforms, and actuators. Then, we propose explicit-time state estimation and closed-loop control algorithms that can tolerate large delays while achieving reasonable performance, and an integrated fail-safe mechanism that achieves a high level of robustness when timing failures happen.\",\"PeriodicalId\":235472,\"journal\":{\"name\":\"IEEE Internet of Things Magazine\",\"volume\":\"52 12\",\"pages\":\"104-110\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Internet of Things Magazine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IOTM.001.2300048\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Internet of Things Magazine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IOTM.001.2300048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design Methodology for Robust, Distributed Time-Sensitive Applications
Time has become an essential aspect of many computing systems where temporal correctness is as important as functional correctness. Autonomous vehicles, Industry 4.0, and smart grids are a few examples of time-sensitive systems. As time-sensitive applications become large, complex, and distributed, traditional methods fall short of achieving the desired orchestration among components. In this vision article, we first propose a standard to maintain an accurate notion of time among all components of the system, i.e., sensors, computing platforms, and actuators. Then, we propose explicit-time state estimation and closed-loop control algorithms that can tolerate large delays while achieving reasonable performance, and an integrated fail-safe mechanism that achieves a high level of robustness when timing failures happen.