哮喘病中的 2 型模糊推理系统和 PSO 混合方法

Tarun Kumar , Anirudh Kumar Bhargava , M.K. Sharma , Nitesh Dhiman , Neha Nain
{"title":"哮喘病中的 2 型模糊推理系统和 PSO 混合方法","authors":"Tarun Kumar ,&nbsp;Anirudh Kumar Bhargava ,&nbsp;M.K. Sharma ,&nbsp;Nitesh Dhiman ,&nbsp;Neha Nain","doi":"10.1016/j.ceh.2024.01.001","DOIUrl":null,"url":null,"abstract":"<div><p>This research work presents a hybrid approach combining a type-2 fuzzy inference system with particle swarm optimization (PSO) to develop a type-2 fuzzy optimized inference system, specifically tailored for asthma patient data. Addressing the inherent uncertainty in medical diagnostics, this model enhances traditional type-1 fuzzy logic by incorporating ambiguity into linguistic variables and utilizing type-2 fuzzy if-then rules. The system is trained to minimize diagnostic error in asthma disease identification. Applied to a dataset comprising eight medical entities from asthma patients, the model demonstrates substantial accuracy improvements. Numerical computations validate the system, showing a decrease in error rate from 1.445 to 0.03, indicating a significant enhancement in diagnostic precision. These results underscore the potential of our model in medical diagnostic problems, providing a novel and effective tool for tackling the complexities of asthma diagnosis.</p></div>","PeriodicalId":100268,"journal":{"name":"Clinical eHealth","volume":"7 ","pages":"Pages 15-26"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2588914124000017/pdfft?md5=305cae56b1c8d6a5f0ff62a1ec33c6ad&pid=1-s2.0-S2588914124000017-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Hybrid approach of type-2 fuzzy inference system and PSO in asthma disease\",\"authors\":\"Tarun Kumar ,&nbsp;Anirudh Kumar Bhargava ,&nbsp;M.K. Sharma ,&nbsp;Nitesh Dhiman ,&nbsp;Neha Nain\",\"doi\":\"10.1016/j.ceh.2024.01.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This research work presents a hybrid approach combining a type-2 fuzzy inference system with particle swarm optimization (PSO) to develop a type-2 fuzzy optimized inference system, specifically tailored for asthma patient data. Addressing the inherent uncertainty in medical diagnostics, this model enhances traditional type-1 fuzzy logic by incorporating ambiguity into linguistic variables and utilizing type-2 fuzzy if-then rules. The system is trained to minimize diagnostic error in asthma disease identification. Applied to a dataset comprising eight medical entities from asthma patients, the model demonstrates substantial accuracy improvements. Numerical computations validate the system, showing a decrease in error rate from 1.445 to 0.03, indicating a significant enhancement in diagnostic precision. These results underscore the potential of our model in medical diagnostic problems, providing a novel and effective tool for tackling the complexities of asthma diagnosis.</p></div>\",\"PeriodicalId\":100268,\"journal\":{\"name\":\"Clinical eHealth\",\"volume\":\"7 \",\"pages\":\"Pages 15-26\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2588914124000017/pdfft?md5=305cae56b1c8d6a5f0ff62a1ec33c6ad&pid=1-s2.0-S2588914124000017-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical eHealth\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2588914124000017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical eHealth","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2588914124000017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这项研究工作提出了一种混合方法,将第二类模糊推理系统与粒子群优化(PSO)相结合,开发出一种专门针对哮喘患者数据的第二类模糊优化推理系统。针对医疗诊断中固有的不确定性,该模型通过将模糊性纳入语言变量并利用第二类模糊 "如果-那么 "规则,增强了传统的第一类模糊逻辑。该系统经过训练,能最大限度地减少哮喘疾病识别中的诊断错误。该模型应用于由哮喘患者的八个医疗实体组成的数据集,其准确性有了大幅提高。数值计算验证了该系统,显示错误率从 1.445 降至 0.03,表明诊断精确度显著提高。这些结果凸显了我们的模型在医疗诊断问题上的潜力,为解决复杂的哮喘诊断问题提供了一种新颖而有效的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hybrid approach of type-2 fuzzy inference system and PSO in asthma disease

This research work presents a hybrid approach combining a type-2 fuzzy inference system with particle swarm optimization (PSO) to develop a type-2 fuzzy optimized inference system, specifically tailored for asthma patient data. Addressing the inherent uncertainty in medical diagnostics, this model enhances traditional type-1 fuzzy logic by incorporating ambiguity into linguistic variables and utilizing type-2 fuzzy if-then rules. The system is trained to minimize diagnostic error in asthma disease identification. Applied to a dataset comprising eight medical entities from asthma patients, the model demonstrates substantial accuracy improvements. Numerical computations validate the system, showing a decrease in error rate from 1.445 to 0.03, indicating a significant enhancement in diagnostic precision. These results underscore the potential of our model in medical diagnostic problems, providing a novel and effective tool for tackling the complexities of asthma diagnosis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.10
自引率
0.00%
发文量
0
期刊最新文献
“AI et al.” The perils of overreliance on Artificial Intelligence by authors in scientific research A systematic review of eHealth and mHealth interventions for lymphedema patients Machine learning and transfer learning techniques for accurate brain tumor classification Internet of Things in healthcare: An adaptive ethical framework for IoT in digital health IoMT Tsukamoto Type-2 fuzzy expert system for tuberculosis and Alzheimer’s disease
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1