{"title":"生态网络分析和优化电力系统设计的弹性和效率","authors":"Bharadwaj Somu , Enrico Zio","doi":"10.1016/j.iintel.2024.100083","DOIUrl":null,"url":null,"abstract":"<div><p>The simultaneous increase in natural disasters and human dependence on critical infrastructures for essential services such as water, electricity, etc., places ever-increasing demands on the reliable, safe, resilient design and operation of these infrastructures, with a trade-off between continuity of supply (safety and resilience) and quality of supply (reliability and efficiency) at limited cost. With this in mind, a new methodology for the analysis of electric power systems inspired by natural ecosystems is proposed here and applied to representative systems from literature. Information theory is used to quantify the results of the ecological network analysis (ENA) performed. The analysis shows that electric power systems are more efficient than reliable and vulnerable to disasters. A flow matrix is constructed from the available IEEE systems data, quantified and analyzed using information theory, and finally validated by contingency analysis and SCOPF analysis. The original network configurations are compared to random generated topologies. Comparisons are also made with ENA-inspired configurations. The latter show significantly fewer violations in each contingency scenario compared to the original configurations, further supporting the use of ENA to balance power system efficiency and resilience. Thus, ENA can be used to develop power systems with balanced efficiency and resilience.</p></div>","PeriodicalId":100791,"journal":{"name":"Journal of Infrastructure Intelligence and Resilience","volume":"3 1","pages":"Article 100083"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772991524000021/pdfft?md5=6a7c5da757d015787dd1f073a57fa8a3&pid=1-s2.0-S2772991524000021-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Ecological network analysis and optimization of resilience and efficiency for electric power systems design\",\"authors\":\"Bharadwaj Somu , Enrico Zio\",\"doi\":\"10.1016/j.iintel.2024.100083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The simultaneous increase in natural disasters and human dependence on critical infrastructures for essential services such as water, electricity, etc., places ever-increasing demands on the reliable, safe, resilient design and operation of these infrastructures, with a trade-off between continuity of supply (safety and resilience) and quality of supply (reliability and efficiency) at limited cost. With this in mind, a new methodology for the analysis of electric power systems inspired by natural ecosystems is proposed here and applied to representative systems from literature. Information theory is used to quantify the results of the ecological network analysis (ENA) performed. The analysis shows that electric power systems are more efficient than reliable and vulnerable to disasters. A flow matrix is constructed from the available IEEE systems data, quantified and analyzed using information theory, and finally validated by contingency analysis and SCOPF analysis. The original network configurations are compared to random generated topologies. Comparisons are also made with ENA-inspired configurations. The latter show significantly fewer violations in each contingency scenario compared to the original configurations, further supporting the use of ENA to balance power system efficiency and resilience. Thus, ENA can be used to develop power systems with balanced efficiency and resilience.</p></div>\",\"PeriodicalId\":100791,\"journal\":{\"name\":\"Journal of Infrastructure Intelligence and Resilience\",\"volume\":\"3 1\",\"pages\":\"Article 100083\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772991524000021/pdfft?md5=6a7c5da757d015787dd1f073a57fa8a3&pid=1-s2.0-S2772991524000021-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Infrastructure Intelligence and Resilience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772991524000021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Infrastructure Intelligence and Resilience","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772991524000021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Ecological network analysis and optimization of resilience and efficiency for electric power systems design
The simultaneous increase in natural disasters and human dependence on critical infrastructures for essential services such as water, electricity, etc., places ever-increasing demands on the reliable, safe, resilient design and operation of these infrastructures, with a trade-off between continuity of supply (safety and resilience) and quality of supply (reliability and efficiency) at limited cost. With this in mind, a new methodology for the analysis of electric power systems inspired by natural ecosystems is proposed here and applied to representative systems from literature. Information theory is used to quantify the results of the ecological network analysis (ENA) performed. The analysis shows that electric power systems are more efficient than reliable and vulnerable to disasters. A flow matrix is constructed from the available IEEE systems data, quantified and analyzed using information theory, and finally validated by contingency analysis and SCOPF analysis. The original network configurations are compared to random generated topologies. Comparisons are also made with ENA-inspired configurations. The latter show significantly fewer violations in each contingency scenario compared to the original configurations, further supporting the use of ENA to balance power system efficiency and resilience. Thus, ENA can be used to develop power systems with balanced efficiency and resilience.