{"title":"基于固定化对二甲氨基苄基亚乙基碘分离和预富集的流动注射结合石墨炉原子吸收光谱仪测定痕量铊","authors":"Bangfu Liu, Guo-wen He, Le-zhou Zhou","doi":"10.1177/17475198231221255","DOIUrl":null,"url":null,"abstract":"The novelty of immobilized p-dimethylaminobenzylidenerhodanine is successfully prepared by using TiO2-based nanoparticles as the carrier. It is applied to preconcentrate and separate trace thallium and detect by flow injection combined with graphite furnace atomic absorption spectrometer. The results show that immobilized p-dimethylaminobenzylidenerhodanine can preconcentrate and separate trace thallium and eliminate the interference of many other ions. The optimal adsorption occurs at pH = 3.5, the retention time is 2.0 min, and the flow velocity is 2.5mL/min. The optimal desorption takes place at a flow velocity of 1.0 mL/min, 1 mL mixed solution (thiourea and HCl were both 0.1 mol/L). The recovery rate of thallium is over 95%; the amount of immobilized p-dimethylaminobenzylidenerhodanine is 22.08 mg/g; the adsorption capacity of thallium for immobilized p-dimethylaminobenzylidenerhodanine is 7.2 mg/g; the molar ratio of thallium ions and p-dimethylaminobenzylidenerhodanine is 5:2. The immobilized p-dimethylaminobenzylidenerhodanine can be recycled and reused. For the developed method, the limit of detection is 8 ng/L, the relative standard deviation is 3.7%, and the recovery is 89%–107%. The method is successfully applied to actual samples with satisfactory results.","PeriodicalId":15323,"journal":{"name":"Journal of Chemical Research","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Determination of trace thallium by flow injection combined with graphite furnace atomic absorption spectrometer based on immobilized p-dimethylaminobenzylidenerhodanine separation and preconcentration\",\"authors\":\"Bangfu Liu, Guo-wen He, Le-zhou Zhou\",\"doi\":\"10.1177/17475198231221255\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The novelty of immobilized p-dimethylaminobenzylidenerhodanine is successfully prepared by using TiO2-based nanoparticles as the carrier. It is applied to preconcentrate and separate trace thallium and detect by flow injection combined with graphite furnace atomic absorption spectrometer. The results show that immobilized p-dimethylaminobenzylidenerhodanine can preconcentrate and separate trace thallium and eliminate the interference of many other ions. The optimal adsorption occurs at pH = 3.5, the retention time is 2.0 min, and the flow velocity is 2.5mL/min. The optimal desorption takes place at a flow velocity of 1.0 mL/min, 1 mL mixed solution (thiourea and HCl were both 0.1 mol/L). The recovery rate of thallium is over 95%; the amount of immobilized p-dimethylaminobenzylidenerhodanine is 22.08 mg/g; the adsorption capacity of thallium for immobilized p-dimethylaminobenzylidenerhodanine is 7.2 mg/g; the molar ratio of thallium ions and p-dimethylaminobenzylidenerhodanine is 5:2. The immobilized p-dimethylaminobenzylidenerhodanine can be recycled and reused. For the developed method, the limit of detection is 8 ng/L, the relative standard deviation is 3.7%, and the recovery is 89%–107%. The method is successfully applied to actual samples with satisfactory results.\",\"PeriodicalId\":15323,\"journal\":{\"name\":\"Journal of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Research\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1177/17475198231221255\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1177/17475198231221255","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Determination of trace thallium by flow injection combined with graphite furnace atomic absorption spectrometer based on immobilized p-dimethylaminobenzylidenerhodanine separation and preconcentration
The novelty of immobilized p-dimethylaminobenzylidenerhodanine is successfully prepared by using TiO2-based nanoparticles as the carrier. It is applied to preconcentrate and separate trace thallium and detect by flow injection combined with graphite furnace atomic absorption spectrometer. The results show that immobilized p-dimethylaminobenzylidenerhodanine can preconcentrate and separate trace thallium and eliminate the interference of many other ions. The optimal adsorption occurs at pH = 3.5, the retention time is 2.0 min, and the flow velocity is 2.5mL/min. The optimal desorption takes place at a flow velocity of 1.0 mL/min, 1 mL mixed solution (thiourea and HCl were both 0.1 mol/L). The recovery rate of thallium is over 95%; the amount of immobilized p-dimethylaminobenzylidenerhodanine is 22.08 mg/g; the adsorption capacity of thallium for immobilized p-dimethylaminobenzylidenerhodanine is 7.2 mg/g; the molar ratio of thallium ions and p-dimethylaminobenzylidenerhodanine is 5:2. The immobilized p-dimethylaminobenzylidenerhodanine can be recycled and reused. For the developed method, the limit of detection is 8 ng/L, the relative standard deviation is 3.7%, and the recovery is 89%–107%. The method is successfully applied to actual samples with satisfactory results.
期刊介绍:
The Journal of Chemical Research is a monthly journal which has a broad international authorship and publishes research papers and reviews in all branches of experimental chemistry. Established in 1977 as a joint venture by the British, French and German chemical societies it maintains the high standards set by the founding societies. Each paper is independently peer reviewed and only carefully evaluated contributions are accepted. Recent papers have described new synthetic methods, new heterocyclic compounds, new natural products, and the inorganic chemistry of metal complexes.