惯性和连续摩擦焊接对 SS 316-Zn 合金摩擦焊接接头机械性能影响的初步研究

IF 3.8 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Advanced Joining Processes Pub Date : 2024-01-09 DOI:10.1016/j.jajp.2024.100187
Hendery Dahlan , Ahmad Kafrawi Nasution , Meifal Rusli
{"title":"惯性和连续摩擦焊接对 SS 316-Zn 合金摩擦焊接接头机械性能影响的初步研究","authors":"Hendery Dahlan ,&nbsp;Ahmad Kafrawi Nasution ,&nbsp;Meifal Rusli","doi":"10.1016/j.jajp.2024.100187","DOIUrl":null,"url":null,"abstract":"<div><p>The effect of inertial friction welding and continuous drive friction welding in joining SS 316 with Zn alloy is discussed in this article. Scanning electron microscopy was utilized to investigate the microstructure of the welding interaction. Energy-dispersive spectroscopy was utilized to identify the chemical composition of the element distribution at the interface. The findings reveal that a continuous drive friction welding process may produce SS 316 welded joints with Zn alloy. With a friction time of 35 s, the joint's tensile strength may reach 60 MPa. During the tensile test, all friction-welded samples failed at the interface. The fracture surface shows an almost flat surface and is not fibrous or brittle. Meanwhile, a new reaction layer from the intermetallic compound layer is not formed at the joint interface. The decrease in hardness in Zn alloys is due to the thermal softening effect caused by continuous heat from friction.</p></div>","PeriodicalId":34313,"journal":{"name":"Journal of Advanced Joining Processes","volume":"9 ","pages":"Article 100187"},"PeriodicalIF":3.8000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666330924000049/pdfft?md5=571af3bb8bfe329bd63bee8b01d9c490&pid=1-s2.0-S2666330924000049-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Preliminary study on effect of inertia and continuous friction welding on mechanical properties of SS 316-Zn alloys friction welded joint\",\"authors\":\"Hendery Dahlan ,&nbsp;Ahmad Kafrawi Nasution ,&nbsp;Meifal Rusli\",\"doi\":\"10.1016/j.jajp.2024.100187\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The effect of inertial friction welding and continuous drive friction welding in joining SS 316 with Zn alloy is discussed in this article. Scanning electron microscopy was utilized to investigate the microstructure of the welding interaction. Energy-dispersive spectroscopy was utilized to identify the chemical composition of the element distribution at the interface. The findings reveal that a continuous drive friction welding process may produce SS 316 welded joints with Zn alloy. With a friction time of 35 s, the joint's tensile strength may reach 60 MPa. During the tensile test, all friction-welded samples failed at the interface. The fracture surface shows an almost flat surface and is not fibrous or brittle. Meanwhile, a new reaction layer from the intermetallic compound layer is not formed at the joint interface. The decrease in hardness in Zn alloys is due to the thermal softening effect caused by continuous heat from friction.</p></div>\",\"PeriodicalId\":34313,\"journal\":{\"name\":\"Journal of Advanced Joining Processes\",\"volume\":\"9 \",\"pages\":\"Article 100187\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666330924000049/pdfft?md5=571af3bb8bfe329bd63bee8b01d9c490&pid=1-s2.0-S2666330924000049-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advanced Joining Processes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666330924000049\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Joining Processes","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666330924000049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了惯性摩擦焊和连续驱动摩擦焊在连接 SS 316 与 Zn 合金时的效果。利用扫描电子显微镜研究了焊接相互作用的微观结构。能量色散光谱法用于确定界面上元素分布的化学成分。研究结果表明,连续驱动摩擦焊接工艺可以生产出 SS 316 与锌合金的焊接接头。摩擦时间为 35 秒时,接头的抗拉强度可达 60 兆帕。在拉伸试验中,所有摩擦焊接样品都在界面处发生断裂。断裂面几乎是一个平面,没有纤维状或脆性。同时,金属间化合物层的新反应层没有在连接界面上形成。Zn 合金硬度的降低是由于摩擦产生的持续热量导致的热软化效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Preliminary study on effect of inertia and continuous friction welding on mechanical properties of SS 316-Zn alloys friction welded joint

The effect of inertial friction welding and continuous drive friction welding in joining SS 316 with Zn alloy is discussed in this article. Scanning electron microscopy was utilized to investigate the microstructure of the welding interaction. Energy-dispersive spectroscopy was utilized to identify the chemical composition of the element distribution at the interface. The findings reveal that a continuous drive friction welding process may produce SS 316 welded joints with Zn alloy. With a friction time of 35 s, the joint's tensile strength may reach 60 MPa. During the tensile test, all friction-welded samples failed at the interface. The fracture surface shows an almost flat surface and is not fibrous or brittle. Meanwhile, a new reaction layer from the intermetallic compound layer is not formed at the joint interface. The decrease in hardness in Zn alloys is due to the thermal softening effect caused by continuous heat from friction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.10
自引率
9.80%
发文量
58
审稿时长
44 days
期刊最新文献
Improving the joint strength of thermoplastic composites joined by press joining using laser-based surface treatment Characterization of physical metallurgy of quenching and partitioning steel in pulsed resistance spot welding: A simulation-aided study Influence of the material properties on the clinching process and the resulting load-bearing capacity of the joint Enhancement of joint quality for laser welded dissimilar material cell-to-busbar joints using meta model-based multi-objective optimization Joining by forming of bi-material collector coins with rotating elements
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1