{"title":"利用多尺度卷积复合神经网络对不平衡数据下的暖通空调系统进行故障诊断","authors":"Rouhui Wu, Yizhu Ren, Mengying Tan, Lei Nie","doi":"10.1007/s12273-023-1086-1","DOIUrl":null,"url":null,"abstract":"<p>Accurate fault diagnosis of heating, ventilation, and air conditioning (HVAC) systems is of significant importance for maintaining normal operation, reducing energy consumption, and minimizing maintenance costs. However, in practical applications, it is challenging to obtain sufficient fault data for HVAC systems, leading to imbalanced data, where the number of fault samples is much smaller than that of normal samples. Moreover, most existing HVAC system fault diagnosis methods heavily rely on balanced training sets to achieve high fault diagnosis accuracy. Therefore, to address this issue, a composite neural network fault diagnosis model is proposed, which combines SMOTETomek, multi-scale one-dimensional convolutional neural networks (M1DCNN), and support vector machine (SVM). This method first utilizes SMOTETomek to augment the minority class samples in the imbalanced dataset, achieving a balanced number of faulty and normal data. Then, it employs the M1DCNN model to extract feature information from the augmented dataset. Finally, it replaces the original Softmax classifier with an SVM classifier for classification, thus enhancing the fault diagnosis accuracy. Using the SMOTETomek-M1DCNN-SVM method, we conducted fault diagnosis validation on both the ASHRAE RP-1043 dataset and experimental dataset with an imbalance ratio of 1:10. The results demonstrate the superiority of this approach, providing a novel and promising solution for intelligent building management, with accuracy and F<sub>1</sub> scores of 98.45% and 100% for the RP-1043 dataset and experimental dataset, respectively.\n</p>","PeriodicalId":49226,"journal":{"name":"Building Simulation","volume":"21 1","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2024-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fault diagnosis of HVAC system with imbalanced data using multi-scale convolution composite neural network\",\"authors\":\"Rouhui Wu, Yizhu Ren, Mengying Tan, Lei Nie\",\"doi\":\"10.1007/s12273-023-1086-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Accurate fault diagnosis of heating, ventilation, and air conditioning (HVAC) systems is of significant importance for maintaining normal operation, reducing energy consumption, and minimizing maintenance costs. However, in practical applications, it is challenging to obtain sufficient fault data for HVAC systems, leading to imbalanced data, where the number of fault samples is much smaller than that of normal samples. Moreover, most existing HVAC system fault diagnosis methods heavily rely on balanced training sets to achieve high fault diagnosis accuracy. Therefore, to address this issue, a composite neural network fault diagnosis model is proposed, which combines SMOTETomek, multi-scale one-dimensional convolutional neural networks (M1DCNN), and support vector machine (SVM). This method first utilizes SMOTETomek to augment the minority class samples in the imbalanced dataset, achieving a balanced number of faulty and normal data. Then, it employs the M1DCNN model to extract feature information from the augmented dataset. Finally, it replaces the original Softmax classifier with an SVM classifier for classification, thus enhancing the fault diagnosis accuracy. Using the SMOTETomek-M1DCNN-SVM method, we conducted fault diagnosis validation on both the ASHRAE RP-1043 dataset and experimental dataset with an imbalance ratio of 1:10. The results demonstrate the superiority of this approach, providing a novel and promising solution for intelligent building management, with accuracy and F<sub>1</sub> scores of 98.45% and 100% for the RP-1043 dataset and experimental dataset, respectively.\\n</p>\",\"PeriodicalId\":49226,\"journal\":{\"name\":\"Building Simulation\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Building Simulation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12273-023-1086-1\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Building Simulation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12273-023-1086-1","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Fault diagnosis of HVAC system with imbalanced data using multi-scale convolution composite neural network
Accurate fault diagnosis of heating, ventilation, and air conditioning (HVAC) systems is of significant importance for maintaining normal operation, reducing energy consumption, and minimizing maintenance costs. However, in practical applications, it is challenging to obtain sufficient fault data for HVAC systems, leading to imbalanced data, where the number of fault samples is much smaller than that of normal samples. Moreover, most existing HVAC system fault diagnosis methods heavily rely on balanced training sets to achieve high fault diagnosis accuracy. Therefore, to address this issue, a composite neural network fault diagnosis model is proposed, which combines SMOTETomek, multi-scale one-dimensional convolutional neural networks (M1DCNN), and support vector machine (SVM). This method first utilizes SMOTETomek to augment the minority class samples in the imbalanced dataset, achieving a balanced number of faulty and normal data. Then, it employs the M1DCNN model to extract feature information from the augmented dataset. Finally, it replaces the original Softmax classifier with an SVM classifier for classification, thus enhancing the fault diagnosis accuracy. Using the SMOTETomek-M1DCNN-SVM method, we conducted fault diagnosis validation on both the ASHRAE RP-1043 dataset and experimental dataset with an imbalance ratio of 1:10. The results demonstrate the superiority of this approach, providing a novel and promising solution for intelligent building management, with accuracy and F1 scores of 98.45% and 100% for the RP-1043 dataset and experimental dataset, respectively.
期刊介绍:
Building Simulation: An International Journal publishes original, high quality, peer-reviewed research papers and review articles dealing with modeling and simulation of buildings including their systems. The goal is to promote the field of building science and technology to such a level that modeling will eventually be used in every aspect of building construction as a routine instead of an exception. Of particular interest are papers that reflect recent developments and applications of modeling tools and their impact on advances of building science and technology.