用于研究天体物理冰的低温真空设施

IF 0.6 4区 物理与天体物理 Q4 PHYSICS, APPLIED Low Temperature Physics Pub Date : 2024-01-11 DOI:10.1063/10.0023894
O. Golikov, D. Yerezhep, A. Akylbayeva, D. Sokolov, E. Korshikov, A. Aldiyarov
{"title":"用于研究天体物理冰的低温真空设施","authors":"O. Golikov, D. Yerezhep, A. Akylbayeva, D. Sokolov, E. Korshikov, A. Aldiyarov","doi":"10.1063/10.0023894","DOIUrl":null,"url":null,"abstract":"This work introduces a cryovacuum apparatus used to investigate substances under near-space conditions. This device allows one to study the refractive index, infrared spectra, and density of substances that are condensed from the vapor phase onto a cooled substrate at temperatures ranging from 11 K to 300 K. Concurrently, the ultimate pressure of 0.1 nTorr can be obtained in the vacuum chamber. The introduced setup utilizes FTIR spectroscopy with a spectral measurement range of 400–7800 cm−1 and laser interference needed to determine the important physical and optical parameters. Several experiments allow us to stress that the data acquired using this apparatus are quite similar to those obtained by other researchers. Because of the non-directional deposition of substances from the vapor phase, the ice formed closely resembles the ice formed in space. This makes the introduced setup particularly useful. It is possible to use the presented cryovacuum apparatus to interpret data acquired in the course of astrophysical observations, allowing a researcher to determine the properties of space objects.","PeriodicalId":18077,"journal":{"name":"Low Temperature Physics","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cryovacuum facilities for studying astrophysical ices\",\"authors\":\"O. Golikov, D. Yerezhep, A. Akylbayeva, D. Sokolov, E. Korshikov, A. Aldiyarov\",\"doi\":\"10.1063/10.0023894\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work introduces a cryovacuum apparatus used to investigate substances under near-space conditions. This device allows one to study the refractive index, infrared spectra, and density of substances that are condensed from the vapor phase onto a cooled substrate at temperatures ranging from 11 K to 300 K. Concurrently, the ultimate pressure of 0.1 nTorr can be obtained in the vacuum chamber. The introduced setup utilizes FTIR spectroscopy with a spectral measurement range of 400–7800 cm−1 and laser interference needed to determine the important physical and optical parameters. Several experiments allow us to stress that the data acquired using this apparatus are quite similar to those obtained by other researchers. Because of the non-directional deposition of substances from the vapor phase, the ice formed closely resembles the ice formed in space. This makes the introduced setup particularly useful. It is possible to use the presented cryovacuum apparatus to interpret data acquired in the course of astrophysical observations, allowing a researcher to determine the properties of space objects.\",\"PeriodicalId\":18077,\"journal\":{\"name\":\"Low Temperature Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Low Temperature Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/10.0023894\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Low Temperature Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/10.0023894","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

这项工作介绍了一种用于研究近空间条件下物质的低温真空设备。该装置可以研究在 11 K 至 300 K 温度范围内从气相冷凝到冷却基底上的物质的折射率、红外光谱和密度。所引入的装置利用傅立叶变换红外光谱仪(光谱测量范围为 400-7800 cm-1)和激光干涉来确定重要的物理和光学参数。通过几次实验,我们可以强调,使用该设备获得的数据与其他研究人员获得的数据非常相似。由于气相物质的非定向沉积,形成的冰与太空中形成的冰非常相似。这使得所介绍的装置特别有用。可以使用所介绍的低温真空设备来解释在天体物理观测过程中获得的数据,使研究人员能够确定空间物体的特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cryovacuum facilities for studying astrophysical ices
This work introduces a cryovacuum apparatus used to investigate substances under near-space conditions. This device allows one to study the refractive index, infrared spectra, and density of substances that are condensed from the vapor phase onto a cooled substrate at temperatures ranging from 11 K to 300 K. Concurrently, the ultimate pressure of 0.1 nTorr can be obtained in the vacuum chamber. The introduced setup utilizes FTIR spectroscopy with a spectral measurement range of 400–7800 cm−1 and laser interference needed to determine the important physical and optical parameters. Several experiments allow us to stress that the data acquired using this apparatus are quite similar to those obtained by other researchers. Because of the non-directional deposition of substances from the vapor phase, the ice formed closely resembles the ice formed in space. This makes the introduced setup particularly useful. It is possible to use the presented cryovacuum apparatus to interpret data acquired in the course of astrophysical observations, allowing a researcher to determine the properties of space objects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Low Temperature Physics
Low Temperature Physics 物理-物理:应用
CiteScore
1.20
自引率
25.00%
发文量
138
审稿时长
3 months
期刊介绍: Guided by an international editorial board, Low Temperature Physics (LTP) communicates the results of important experimental and theoretical studies conducted at low temperatures. LTP offers key work in such areas as superconductivity, magnetism, lattice dynamics, quantum liquids and crystals, cryocrystals, low-dimensional and disordered systems, electronic properties of normal metals and alloys, and critical phenomena. The journal publishes original articles on new experimental and theoretical results as well as review articles, brief communications, memoirs, and biographies. Low Temperature Physics, a translation of the copyrighted Journal FIZIKA NIZKIKH TEMPERATUR, is a monthly journal containing English reports of current research in the field of the low temperature physics. The translation began with the 1975 issues. One volume is published annually beginning with the January issues.
期刊最新文献
Revisiting structural, vibrational, and photochemical data of matrix-isolated simple hydantoins — Common features and substituent effects Conformers of valeric acid: Matrix isolation infrared spectroscopy study Helium 1s photoemission and photon stimulated desorption of He+ ions by double excitations from adsorbed helium layers: Zero-point motion and matrix effects Characterization of H–π and CH–O structures of the 1:1 methanol-benzene complex using matrix isolation infrared spectroscopy Linearly polarized luminescence of polyyne molecules aligned in PVA films
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1