基于 PFC3D 的砂卵石土三轴试验介观参数校准方法

IF 2.9 3区 工程技术 Q2 ENGINEERING, CIVIL Frontiers of Structural and Civil Engineering Pub Date : 2024-01-13 DOI:10.1007/s11709-023-0028-4
Pengfei Li, Xiaopu Cui, Yingjie Wei, Junwei Xia, Xinyu Wang
{"title":"基于 PFC3D 的砂卵石土三轴试验介观参数校准方法","authors":"Pengfei Li, Xiaopu Cui, Yingjie Wei, Junwei Xia, Xinyu Wang","doi":"10.1007/s11709-023-0028-4","DOIUrl":null,"url":null,"abstract":"<p>This paper presents a rapid and effective calibration method of mesoscopic parameters of a three-dimensional particle flow code (PFC3D) model for sandy cobble soil. The method is based on a series of numerical tests and takes into account the significant influence of mesoscopic parameters on macroscopic parameters. First, numerical simulations are conducted, with five implementation steps. Then, the multi-factor analysis of variance method is used to analyze the experimental results, the mesoscopic parameters with significant influence on the macroscopic response are singled out, and their linear relations to macroscopic responses are estimated by multiple linear regression. Finally, the parameter calibration problem is transformed into a multi-objective function optimization problem. Numerical simulation results are in good agreement with laboratory results both qualitatively and quantitatively. The results of this study can provide a basis for the calibration of microscopic parameters for the investigation of sandy cobble soil mechanical behavior.</p>","PeriodicalId":12476,"journal":{"name":"Frontiers of Structural and Civil Engineering","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Calibration method of mesoscopic parameter in sandy cobble soil triaxial test based on PFC3D\",\"authors\":\"Pengfei Li, Xiaopu Cui, Yingjie Wei, Junwei Xia, Xinyu Wang\",\"doi\":\"10.1007/s11709-023-0028-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper presents a rapid and effective calibration method of mesoscopic parameters of a three-dimensional particle flow code (PFC3D) model for sandy cobble soil. The method is based on a series of numerical tests and takes into account the significant influence of mesoscopic parameters on macroscopic parameters. First, numerical simulations are conducted, with five implementation steps. Then, the multi-factor analysis of variance method is used to analyze the experimental results, the mesoscopic parameters with significant influence on the macroscopic response are singled out, and their linear relations to macroscopic responses are estimated by multiple linear regression. Finally, the parameter calibration problem is transformed into a multi-objective function optimization problem. Numerical simulation results are in good agreement with laboratory results both qualitatively and quantitatively. The results of this study can provide a basis for the calibration of microscopic parameters for the investigation of sandy cobble soil mechanical behavior.</p>\",\"PeriodicalId\":12476,\"journal\":{\"name\":\"Frontiers of Structural and Civil Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Structural and Civil Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11709-023-0028-4\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Structural and Civil Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11709-023-0028-4","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种快速有效的砂卵石土三维颗粒流代码(PFC3D)模型中观参数校准方法。该方法基于一系列数值试验,并考虑了中观参数对宏观参数的重要影响。首先,通过五个实施步骤进行了数值模拟。然后,采用多因素方差分析法对试验结果进行分析,选出对宏观响应有显著影响的中观参数,并通过多元线性回归估计其与宏观响应的线性关系。最后,将参数校准问题转化为多目标函数优化问题。数值模拟结果与实验室结果在定性和定量方面都非常吻合。该研究结果可为研究砂卵石土壤力学行为的微观参数校准提供依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Calibration method of mesoscopic parameter in sandy cobble soil triaxial test based on PFC3D

This paper presents a rapid and effective calibration method of mesoscopic parameters of a three-dimensional particle flow code (PFC3D) model for sandy cobble soil. The method is based on a series of numerical tests and takes into account the significant influence of mesoscopic parameters on macroscopic parameters. First, numerical simulations are conducted, with five implementation steps. Then, the multi-factor analysis of variance method is used to analyze the experimental results, the mesoscopic parameters with significant influence on the macroscopic response are singled out, and their linear relations to macroscopic responses are estimated by multiple linear regression. Finally, the parameter calibration problem is transformed into a multi-objective function optimization problem. Numerical simulation results are in good agreement with laboratory results both qualitatively and quantitatively. The results of this study can provide a basis for the calibration of microscopic parameters for the investigation of sandy cobble soil mechanical behavior.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.20
自引率
3.30%
发文量
734
期刊介绍: Frontiers of Structural and Civil Engineering is an international journal that publishes original research papers, review articles and case studies related to civil and structural engineering. Topics include but are not limited to the latest developments in building and bridge structures, geotechnical engineering, hydraulic engineering, coastal engineering, and transport engineering. Case studies that demonstrate the successful applications of cutting-edge research technologies are welcome. The journal also promotes and publishes interdisciplinary research and applications connecting civil engineering and other disciplines, such as bio-, info-, nano- and social sciences and technology. Manuscripts submitted for publication will be subject to a stringent peer review.
期刊最新文献
An artificial neural network based deep collocation method for the solution of transient linear and nonlinear partial differential equations Bibliographic survey and comprehensive review on mechanical and durability properties of microorganism based self-healing concrete Seismic response of pile-supported structures considering the coupling of inertial and kinematic interactions in different soil sites An isogeometric approach for nonlocal bending and free oscillation of magneto-electro-elastic functionally graded nanobeam with elastic constraints Shaking table test on a tunnel-group metro station in rock site under harmonic excitation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1