HBC 494广角外流的运动学和动力学特性

IF 4.7 3区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Monthly Notices of the Royal Astronomical Society Pub Date : 2024-01-12 DOI:10.1093/mnras/stae085
Austen Fourkas, Dary Ruíz-Rodríguez, Lee G Mundy, Jonathan P Williams
{"title":"HBC 494广角外流的运动学和动力学特性","authors":"Austen Fourkas, Dary Ruíz-Rodríguez, Lee G Mundy, Jonathan P Williams","doi":"10.1093/mnras/stae085","DOIUrl":null,"url":null,"abstract":"We present Atacama Large Millimeter/sub-millimeter Array (ALMA) Cycle-5 observations of HBC 494, as well as calculations of the kinematic and dynamic variables which represent the object’s wide-angle bipolar outflows. HBC 494 is a binary FU Orionis type object located in the Orion A molecular cloud. We take advantage of combining the ALMA main array, Atacama Compact Array (ACA), and Total Power (TP) array in order to map HBC 494’s outflows and thus, estimate their kinematic parameters with higher accuracy in comparison to prior publications. We use 12CO, 13CO, C18O, and SO observations to describe the object’s outflows, envelope, and disc, as well as estimate the mass, momentum, and kinetic energy of the outflows. After correcting for optical opacity near systemic velocities, we estimate a mass of 3.0 × 10−2 M⊙ for the southern outflow and 2.8 × 10−2 M⊙ for northern outflow. We report the first detection of a secondary outflow cavity located approximately 15″ north of the central binary system, which could be a remnant of a previous large-scale accretion outburst. Furthermore, we find CO spatial features in HBC 494’s outflows corresponding to position angles of ∼35○ and ∼145○. This suggests that HBC 494’s outflows are most likely a composite of overlapping outflows from two different sources, i.e., HBC 494a and HBC 494b, the two objects in the binary system.","PeriodicalId":18930,"journal":{"name":"Monthly Notices of the Royal Astronomical Society","volume":"82 1","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The kinematic and dynamic properties of HBC 494’s wide-angle outflows\",\"authors\":\"Austen Fourkas, Dary Ruíz-Rodríguez, Lee G Mundy, Jonathan P Williams\",\"doi\":\"10.1093/mnras/stae085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present Atacama Large Millimeter/sub-millimeter Array (ALMA) Cycle-5 observations of HBC 494, as well as calculations of the kinematic and dynamic variables which represent the object’s wide-angle bipolar outflows. HBC 494 is a binary FU Orionis type object located in the Orion A molecular cloud. We take advantage of combining the ALMA main array, Atacama Compact Array (ACA), and Total Power (TP) array in order to map HBC 494’s outflows and thus, estimate their kinematic parameters with higher accuracy in comparison to prior publications. We use 12CO, 13CO, C18O, and SO observations to describe the object’s outflows, envelope, and disc, as well as estimate the mass, momentum, and kinetic energy of the outflows. After correcting for optical opacity near systemic velocities, we estimate a mass of 3.0 × 10−2 M⊙ for the southern outflow and 2.8 × 10−2 M⊙ for northern outflow. We report the first detection of a secondary outflow cavity located approximately 15″ north of the central binary system, which could be a remnant of a previous large-scale accretion outburst. Furthermore, we find CO spatial features in HBC 494’s outflows corresponding to position angles of ∼35○ and ∼145○. This suggests that HBC 494’s outflows are most likely a composite of overlapping outflows from two different sources, i.e., HBC 494a and HBC 494b, the two objects in the binary system.\",\"PeriodicalId\":18930,\"journal\":{\"name\":\"Monthly Notices of the Royal Astronomical Society\",\"volume\":\"82 1\",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Monthly Notices of the Royal Astronomical Society\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1093/mnras/stae085\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monthly Notices of the Royal Astronomical Society","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1093/mnras/stae085","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

我们介绍了阿塔卡马大型毫米波/亚毫米波阵列(ALMA)对HBC 494的第5周期观测结果,以及代表该天体广角双极外流的运动学和动力学变量的计算结果。HBC 494 是位于猎户座 A 分子云中的猎户座 FU 型双星。我们利用 ALMA 主阵列、阿塔卡马紧凑阵列(ACA)和全功率(TP)阵列的组合优势,绘制了 HBC 494 的外流图,从而比以前的出版物更精确地估算了其运动学参数。我们利用 12CO、13CO、C18O 和 SO 观测数据来描述该天体的外流、包膜和圆盘,并估算外流的质量、动量和动能。在校正了系统速度附近的光学不透明度之后,我们估计南侧外流的质量为 3.0 × 10-2 M⊙,北侧外流的质量为 2.8 × 10-2 M⊙。我们首次探测到了位于中央双星系统以北约15″处的次级流出腔,它可能是先前大规模吸积爆发的残余物。此外,我们还在 HBC 494 的外流中发现了 CO 空间特征,其位置角分别为 ∼35○和 ∼145○。这表明,HBC 494 的外溢流很可能是来自两个不同来源的重叠外溢流的复合体,即双星系统中的两个天体 HBC 494a 和 HBC 494b。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The kinematic and dynamic properties of HBC 494’s wide-angle outflows
We present Atacama Large Millimeter/sub-millimeter Array (ALMA) Cycle-5 observations of HBC 494, as well as calculations of the kinematic and dynamic variables which represent the object’s wide-angle bipolar outflows. HBC 494 is a binary FU Orionis type object located in the Orion A molecular cloud. We take advantage of combining the ALMA main array, Atacama Compact Array (ACA), and Total Power (TP) array in order to map HBC 494’s outflows and thus, estimate their kinematic parameters with higher accuracy in comparison to prior publications. We use 12CO, 13CO, C18O, and SO observations to describe the object’s outflows, envelope, and disc, as well as estimate the mass, momentum, and kinetic energy of the outflows. After correcting for optical opacity near systemic velocities, we estimate a mass of 3.0 × 10−2 M⊙ for the southern outflow and 2.8 × 10−2 M⊙ for northern outflow. We report the first detection of a secondary outflow cavity located approximately 15″ north of the central binary system, which could be a remnant of a previous large-scale accretion outburst. Furthermore, we find CO spatial features in HBC 494’s outflows corresponding to position angles of ∼35○ and ∼145○. This suggests that HBC 494’s outflows are most likely a composite of overlapping outflows from two different sources, i.e., HBC 494a and HBC 494b, the two objects in the binary system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.10
自引率
37.50%
发文量
3198
审稿时长
3 months
期刊介绍: Monthly Notices of the Royal Astronomical Society is one of the world''s leading primary research journals in astronomy and astrophysics, as well as one of the longest established. It publishes the results of original research in positional and dynamical astronomy, astrophysics, radio astronomy, cosmology, space research and the design of astronomical instruments.
期刊最新文献
Predictive prognostic factors in patients with proximal humeral fracture treated with reverse shoulder arthroplasty. AHKASH: a new Hybrid particle-in-cell code for simulations of astrophysical collisionless plasma. Uncovering Tidal Treasures: Automated Classification of faint tidal features in DECaLS Data CXOU J005245.0-722844: Discovery of a be star / white dwarf binary system in the SMC via a very fast, super-eddington X-ray outburst event On the sausage magnetohydrodynamic waves in magnetic flux tubes: finite plasma beta and phase mixing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1