M. Kalimuthu, M. Ramya, S. Sreethar, N. Nandhagopal
{"title":"利用利维搜索更新降雨混合深度双级 BILSTM 对唾液数据样本中的胃癌进行分类","authors":"M. Kalimuthu, M. Ramya, S. Sreethar, N. Nandhagopal","doi":"10.1080/0952813x.2023.2301371","DOIUrl":null,"url":null,"abstract":"An innovative approach is needed for the early identification of GC (Gastric cancer) to improve the prediction of GC patients. This work presents a GC prediction system to identify GC depending on ...","PeriodicalId":15677,"journal":{"name":"Journal of Experimental & Theoretical Artificial Intelligence","volume":"1 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gastric cancer classification in saliva data samples using Levy search updated rainfall hybrid deep dual-stage BILSTM\",\"authors\":\"M. Kalimuthu, M. Ramya, S. Sreethar, N. Nandhagopal\",\"doi\":\"10.1080/0952813x.2023.2301371\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An innovative approach is needed for the early identification of GC (Gastric cancer) to improve the prediction of GC patients. This work presents a GC prediction system to identify GC depending on ...\",\"PeriodicalId\":15677,\"journal\":{\"name\":\"Journal of Experimental & Theoretical Artificial Intelligence\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Experimental & Theoretical Artificial Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1080/0952813x.2023.2301371\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental & Theoretical Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/0952813x.2023.2301371","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Gastric cancer classification in saliva data samples using Levy search updated rainfall hybrid deep dual-stage BILSTM
An innovative approach is needed for the early identification of GC (Gastric cancer) to improve the prediction of GC patients. This work presents a GC prediction system to identify GC depending on ...
期刊介绍:
Journal of Experimental & Theoretical Artificial Intelligence (JETAI) is a world leading journal dedicated to publishing high quality, rigorously reviewed, original papers in artificial intelligence (AI) research.
The journal features work in all subfields of AI research and accepts both theoretical and applied research. Topics covered include, but are not limited to, the following:
• cognitive science
• games
• learning
• knowledge representation
• memory and neural system modelling
• perception
• problem-solving