{"title":"从高度旋转的轻型紧凑双星中定向搜索引力波","authors":"Yi-Fan Wang, Alexander H Nitz","doi":"10.1093/mnras/stae091","DOIUrl":null,"url":null,"abstract":"Searches for gravitational waves from compact-binary mergers, which to date have reported ∼100 observations, have previously ignored binaries whose components are both consistent with the mass of neutron stars (1M⊙ to 2M⊙) and have high dimensionless spin >0.05. While previous searches targeted sources that are representative of observed neutron star binaries in the galaxy, it is already known that neutron stars can regularly be spun up to a dimensionless spin of ∼0.4, and in principle reach up to ∼0.7 before breakup would occur. Furthermore, there may be primordial black hole binaries or exotic formation mechanisms to produce light black holes. In these cases, it is possible for the binary constituent to be spun up beyond that achievable by a neutron star. A single detection of this type of source would reveal a novel formation channel for compact-binaries. To determine if there is evidence for any such sources, we use PyCBC to conduct a targeted search of LIGO and Virgo data for light compact objects with high spin. Our analysis detects previously known observations GW170817 and GW200115; however, we report no additional mergers. The most significant candidate, not previously known, is consistent with the noise distribution, and so we constrain the merger rate of spinning light binaries.","PeriodicalId":18930,"journal":{"name":"Monthly Notices of the Royal Astronomical Society","volume":"20 1","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Targeted search for gravitational waves from highly spinning light compact binaries\",\"authors\":\"Yi-Fan Wang, Alexander H Nitz\",\"doi\":\"10.1093/mnras/stae091\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Searches for gravitational waves from compact-binary mergers, which to date have reported ∼100 observations, have previously ignored binaries whose components are both consistent with the mass of neutron stars (1M⊙ to 2M⊙) and have high dimensionless spin >0.05. While previous searches targeted sources that are representative of observed neutron star binaries in the galaxy, it is already known that neutron stars can regularly be spun up to a dimensionless spin of ∼0.4, and in principle reach up to ∼0.7 before breakup would occur. Furthermore, there may be primordial black hole binaries or exotic formation mechanisms to produce light black holes. In these cases, it is possible for the binary constituent to be spun up beyond that achievable by a neutron star. A single detection of this type of source would reveal a novel formation channel for compact-binaries. To determine if there is evidence for any such sources, we use PyCBC to conduct a targeted search of LIGO and Virgo data for light compact objects with high spin. Our analysis detects previously known observations GW170817 and GW200115; however, we report no additional mergers. The most significant candidate, not previously known, is consistent with the noise distribution, and so we constrain the merger rate of spinning light binaries.\",\"PeriodicalId\":18930,\"journal\":{\"name\":\"Monthly Notices of the Royal Astronomical Society\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Monthly Notices of the Royal Astronomical Society\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1093/mnras/stae091\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monthly Notices of the Royal Astronomical Society","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1093/mnras/stae091","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Targeted search for gravitational waves from highly spinning light compact binaries
Searches for gravitational waves from compact-binary mergers, which to date have reported ∼100 observations, have previously ignored binaries whose components are both consistent with the mass of neutron stars (1M⊙ to 2M⊙) and have high dimensionless spin >0.05. While previous searches targeted sources that are representative of observed neutron star binaries in the galaxy, it is already known that neutron stars can regularly be spun up to a dimensionless spin of ∼0.4, and in principle reach up to ∼0.7 before breakup would occur. Furthermore, there may be primordial black hole binaries or exotic formation mechanisms to produce light black holes. In these cases, it is possible for the binary constituent to be spun up beyond that achievable by a neutron star. A single detection of this type of source would reveal a novel formation channel for compact-binaries. To determine if there is evidence for any such sources, we use PyCBC to conduct a targeted search of LIGO and Virgo data for light compact objects with high spin. Our analysis detects previously known observations GW170817 and GW200115; however, we report no additional mergers. The most significant candidate, not previously known, is consistent with the noise distribution, and so we constrain the merger rate of spinning light binaries.
期刊介绍:
Monthly Notices of the Royal Astronomical Society is one of the world''s leading primary research journals in astronomy and astrophysics, as well as one of the longest established. It publishes the results of original research in positional and dynamical astronomy, astrophysics, radio astronomy, cosmology, space research and the design of astronomical instruments.