{"title":"带包的在线鞍点问题和在线凸优化","authors":"Adrian Rivera Cardoso, He Wang, Huan Xu","doi":"10.1287/moor.2018.0330","DOIUrl":null,"url":null,"abstract":"We study the online saddle point problem, an online learning problem where at each iteration, a pair of actions needs to be chosen without knowledge of the current and future (convex-concave) payoff functions. The objective is to minimize the gap between the cumulative payoffs and the saddle point value of the aggregate payoff function, which we measure using a metric called saddle point regret (SP-Regret). The problem generalizes the online convex optimization framework, but here, we must ensure that both players incur cumulative payoffs close to that of the Nash equilibrium of the sum of the games. We propose an algorithm that achieves SP-Regret proportional to [Formula: see text] in the general case, and [Formula: see text] SP-Regret for the strongly convex-concave case. We also consider the special case where the payoff functions are bilinear and the decision sets are the probability simplex. In this setting, we are able to design algorithms that reduce the bounds on SP-Regret from a linear dependence in the dimension of the problem to a logarithmic one. We also study the problem under bandit feedback and provide an algorithm that achieves sublinear SP-Regret. We then consider an online convex optimization with knapsacks problem motivated by a wide variety of applications, such as dynamic pricing, auctions, and crowdsourcing. We relate this problem to the online saddle point problem and establish [Formula: see text] regret using a primal-dual algorithm.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Online Saddle Point Problem and Online Convex Optimization with Knapsacks\",\"authors\":\"Adrian Rivera Cardoso, He Wang, Huan Xu\",\"doi\":\"10.1287/moor.2018.0330\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the online saddle point problem, an online learning problem where at each iteration, a pair of actions needs to be chosen without knowledge of the current and future (convex-concave) payoff functions. The objective is to minimize the gap between the cumulative payoffs and the saddle point value of the aggregate payoff function, which we measure using a metric called saddle point regret (SP-Regret). The problem generalizes the online convex optimization framework, but here, we must ensure that both players incur cumulative payoffs close to that of the Nash equilibrium of the sum of the games. We propose an algorithm that achieves SP-Regret proportional to [Formula: see text] in the general case, and [Formula: see text] SP-Regret for the strongly convex-concave case. We also consider the special case where the payoff functions are bilinear and the decision sets are the probability simplex. In this setting, we are able to design algorithms that reduce the bounds on SP-Regret from a linear dependence in the dimension of the problem to a logarithmic one. We also study the problem under bandit feedback and provide an algorithm that achieves sublinear SP-Regret. We then consider an online convex optimization with knapsacks problem motivated by a wide variety of applications, such as dynamic pricing, auctions, and crowdsourcing. We relate this problem to the online saddle point problem and establish [Formula: see text] regret using a primal-dual algorithm.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1287/moor.2018.0330\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1287/moor.2018.0330","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
The Online Saddle Point Problem and Online Convex Optimization with Knapsacks
We study the online saddle point problem, an online learning problem where at each iteration, a pair of actions needs to be chosen without knowledge of the current and future (convex-concave) payoff functions. The objective is to minimize the gap between the cumulative payoffs and the saddle point value of the aggregate payoff function, which we measure using a metric called saddle point regret (SP-Regret). The problem generalizes the online convex optimization framework, but here, we must ensure that both players incur cumulative payoffs close to that of the Nash equilibrium of the sum of the games. We propose an algorithm that achieves SP-Regret proportional to [Formula: see text] in the general case, and [Formula: see text] SP-Regret for the strongly convex-concave case. We also consider the special case where the payoff functions are bilinear and the decision sets are the probability simplex. In this setting, we are able to design algorithms that reduce the bounds on SP-Regret from a linear dependence in the dimension of the problem to a logarithmic one. We also study the problem under bandit feedback and provide an algorithm that achieves sublinear SP-Regret. We then consider an online convex optimization with knapsacks problem motivated by a wide variety of applications, such as dynamic pricing, auctions, and crowdsourcing. We relate this problem to the online saddle point problem and establish [Formula: see text] regret using a primal-dual algorithm.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.