染色体单链断裂修复与神经系统疾病:对转录和新兴基因组工具的影响

IF 3 3区 生物学 Q2 GENETICS & HEREDITY DNA Repair Pub Date : 2024-01-11 DOI:10.1016/j.dnarep.2024.103629
Arwa A. Abugable , Sarah Antar , Sherif F. El-Khamisy
{"title":"染色体单链断裂修复与神经系统疾病:对转录和新兴基因组工具的影响","authors":"Arwa A. Abugable ,&nbsp;Sarah Antar ,&nbsp;Sherif F. El-Khamisy","doi":"10.1016/j.dnarep.2024.103629","DOIUrl":null,"url":null,"abstract":"<div><p>Cells are constantly exposed to various sources of DNA damage that pose a threat to their genomic integrity. One of the most common types of DNA breaks are single-strand breaks (SSBs). Mutations in the repair proteins that are important for repairing SSBs have been reported in several neurological disorders. While several tools have been utilised to investigate SSBs in cells, it was only through recent advances in genomics that we are now beginning to understand the architecture of the non-random distribution of SSBs and their impact on key cellular processes such as transcription and epigenetic remodelling. Here, we discuss our current understanding of the genome-wide distribution of SSBs, their link to neurological disorders and summarise recent technologies to investigate SSBs at the genomic level.</p></div>","PeriodicalId":300,"journal":{"name":"DNA Repair","volume":"135 ","pages":"Article 103629"},"PeriodicalIF":3.0000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1568786424000053/pdfft?md5=7bd73d969afccba3f01a54434887ef4b&pid=1-s2.0-S1568786424000053-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Chromosomal single-strand break repair and neurological disease: Implications on transcription and emerging genomic tools\",\"authors\":\"Arwa A. Abugable ,&nbsp;Sarah Antar ,&nbsp;Sherif F. El-Khamisy\",\"doi\":\"10.1016/j.dnarep.2024.103629\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Cells are constantly exposed to various sources of DNA damage that pose a threat to their genomic integrity. One of the most common types of DNA breaks are single-strand breaks (SSBs). Mutations in the repair proteins that are important for repairing SSBs have been reported in several neurological disorders. While several tools have been utilised to investigate SSBs in cells, it was only through recent advances in genomics that we are now beginning to understand the architecture of the non-random distribution of SSBs and their impact on key cellular processes such as transcription and epigenetic remodelling. Here, we discuss our current understanding of the genome-wide distribution of SSBs, their link to neurological disorders and summarise recent technologies to investigate SSBs at the genomic level.</p></div>\",\"PeriodicalId\":300,\"journal\":{\"name\":\"DNA Repair\",\"volume\":\"135 \",\"pages\":\"Article 103629\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1568786424000053/pdfft?md5=7bd73d969afccba3f01a54434887ef4b&pid=1-s2.0-S1568786424000053-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"DNA Repair\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1568786424000053\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"DNA Repair","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1568786424000053","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

细胞经常会受到各种 DNA 损伤,对其基因组的完整性构成威胁。单链断裂(SSB)是最常见的 DNA 断裂类型之一。据报道,在几种神经系统疾病中,对修复单链断裂非常重要的修复蛋白发生了突变。虽然已有多种工具用于研究细胞中的单链断裂,但直到最近基因组学的发展,我们才开始了解单链断裂非随机分布的结构及其对转录和表观遗传重塑等关键细胞过程的影响。在这里,我们将讨论我们目前对 SSB 的全基因组分布、它们与神经系统疾病的联系的理解,并总结最近在基因组水平上研究 SSB 的技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Chromosomal single-strand break repair and neurological disease: Implications on transcription and emerging genomic tools

Cells are constantly exposed to various sources of DNA damage that pose a threat to their genomic integrity. One of the most common types of DNA breaks are single-strand breaks (SSBs). Mutations in the repair proteins that are important for repairing SSBs have been reported in several neurological disorders. While several tools have been utilised to investigate SSBs in cells, it was only through recent advances in genomics that we are now beginning to understand the architecture of the non-random distribution of SSBs and their impact on key cellular processes such as transcription and epigenetic remodelling. Here, we discuss our current understanding of the genome-wide distribution of SSBs, their link to neurological disorders and summarise recent technologies to investigate SSBs at the genomic level.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
DNA Repair
DNA Repair 生物-毒理学
CiteScore
7.60
自引率
5.30%
发文量
91
审稿时长
59 days
期刊介绍: DNA Repair provides a forum for the comprehensive coverage of DNA repair and cellular responses to DNA damage. The journal publishes original observations on genetic, cellular, biochemical, structural and molecular aspects of DNA repair, mutagenesis, cell cycle regulation, apoptosis and other biological responses in cells exposed to genomic insult, as well as their relationship to human disease. DNA Repair publishes full-length research articles, brief reports on research, and reviews. The journal welcomes articles describing databases, methods and new technologies supporting research on DNA repair and responses to DNA damage. Letters to the Editor, hot topics and classics in DNA repair, historical reflections, book reviews and meeting reports also will be considered for publication.
期刊最新文献
Why the ROS matters: One-electron oxidants focus DNA damage and repair on G-quadruplexes for gene regulation DNAR special issue: DNA damage responses and neurological disease The DNA damage response and neurological disease PrimPol-mediated repriming elicits gap-filling by template switching and promotes cellular tolerance to cidofovir The interferon response at the intersection of genome integrity and innate immunity Discovery of KPT-6566 as STAG1/2 Inhibitor sensitizing PARP and NHEJ Inhibitors to suppress tumor cells growth in vitro
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1