{"title":"锚定 MaxDiff 中的激励调整可产生卓越的预测有效性","authors":"Joshua Benjamin Schramm, Marcel Lichters","doi":"10.1007/s11002-023-09714-2","DOIUrl":null,"url":null,"abstract":"<p>Maximum Difference Scaling (MaxDiff) is an essential method in marketing concerning forecasting consumer purchase decisions and general product demand. However, the usefulness of traditional MaxDiff studies suffers from two limitations. First, it measures relative preferences, which prevents predicting how many consumers would actually buy a product and impedes comparing results across respondents. Second, market researchers apply MaxDiff in hypothetical settings that might not reveal valid preferences due to hypothetical bias. The first limitation has been addressed by implementing anchored MaxDiff variants. In contrast, the latter limitation has only been targeted in other preference measurement procedures such as conjoint analysis by applying incentive alignment. By integrating anchored MaxDiff (i.e., direct vs. indirect anchoring) with incentive alignment (present vs. absent) in a 2 × 2 between-subjects preregistered online experiment (<i>n</i> = 448), the current study is the first to address both threats. The results show that incentive-aligning MaxDiff increases the predictive validity regarding consequential product choices—importantly—independently of the anchoring method. In contrast, hypothetical MaxDiff variants overestimate general product demand. The article concludes by showcasing how the managerial implications drawn from anchored MaxDiff differ depending on the four tested variants. In addition, we provide the first incentive-aligned MaxDiff benchmark dataset in the field.</p>","PeriodicalId":48068,"journal":{"name":"Marketing Letters","volume":"69 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Incentive alignment in anchored MaxDiff yields superior predictive validity\",\"authors\":\"Joshua Benjamin Schramm, Marcel Lichters\",\"doi\":\"10.1007/s11002-023-09714-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Maximum Difference Scaling (MaxDiff) is an essential method in marketing concerning forecasting consumer purchase decisions and general product demand. However, the usefulness of traditional MaxDiff studies suffers from two limitations. First, it measures relative preferences, which prevents predicting how many consumers would actually buy a product and impedes comparing results across respondents. Second, market researchers apply MaxDiff in hypothetical settings that might not reveal valid preferences due to hypothetical bias. The first limitation has been addressed by implementing anchored MaxDiff variants. In contrast, the latter limitation has only been targeted in other preference measurement procedures such as conjoint analysis by applying incentive alignment. By integrating anchored MaxDiff (i.e., direct vs. indirect anchoring) with incentive alignment (present vs. absent) in a 2 × 2 between-subjects preregistered online experiment (<i>n</i> = 448), the current study is the first to address both threats. The results show that incentive-aligning MaxDiff increases the predictive validity regarding consequential product choices—importantly—independently of the anchoring method. In contrast, hypothetical MaxDiff variants overestimate general product demand. The article concludes by showcasing how the managerial implications drawn from anchored MaxDiff differ depending on the four tested variants. In addition, we provide the first incentive-aligned MaxDiff benchmark dataset in the field.</p>\",\"PeriodicalId\":48068,\"journal\":{\"name\":\"Marketing Letters\",\"volume\":\"69 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Marketing Letters\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://doi.org/10.1007/s11002-023-09714-2\",\"RegionNum\":3,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BUSINESS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marketing Letters","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1007/s11002-023-09714-2","RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BUSINESS","Score":null,"Total":0}
Incentive alignment in anchored MaxDiff yields superior predictive validity
Maximum Difference Scaling (MaxDiff) is an essential method in marketing concerning forecasting consumer purchase decisions and general product demand. However, the usefulness of traditional MaxDiff studies suffers from two limitations. First, it measures relative preferences, which prevents predicting how many consumers would actually buy a product and impedes comparing results across respondents. Second, market researchers apply MaxDiff in hypothetical settings that might not reveal valid preferences due to hypothetical bias. The first limitation has been addressed by implementing anchored MaxDiff variants. In contrast, the latter limitation has only been targeted in other preference measurement procedures such as conjoint analysis by applying incentive alignment. By integrating anchored MaxDiff (i.e., direct vs. indirect anchoring) with incentive alignment (present vs. absent) in a 2 × 2 between-subjects preregistered online experiment (n = 448), the current study is the first to address both threats. The results show that incentive-aligning MaxDiff increases the predictive validity regarding consequential product choices—importantly—independently of the anchoring method. In contrast, hypothetical MaxDiff variants overestimate general product demand. The article concludes by showcasing how the managerial implications drawn from anchored MaxDiff differ depending on the four tested variants. In addition, we provide the first incentive-aligned MaxDiff benchmark dataset in the field.
期刊介绍:
Marketing Letters: A Journal of Research in Marketing publishes high-quality, shorter paper (under 5,000 words including abstract, main text and references, which is equivalent to 20 total pages, double-spaced with 12 point Times New Roman font) on marketing, the emphasis being on immediacy and current interest. The journal offers a medium for the truly rapid publication of research results.
The focus of Marketing Letters is on empirical findings, methodological papers, and theoretical and conceptual insights across areas of research in marketing.
Marketing Letters is required reading for anyone working in marketing science, consumer research, methodology, and marketing strategy and management.
The key subject areas and topics covered in Marketing Letters are: choice models, consumer behavior, consumer research, management science, market research, sales and advertising, marketing management, marketing research, marketing science, psychology, and statistics.
Officially cited as: Mark Lett