Charlotte Wouters, Musbah Nofal, Piero Mazzolini, Jijun Zhang, Thilo Remmele, Albert Kwasniewski, Oliver Bierwagen, Martin Albrecht
{"title":"揭示从 γ-Ga2O3 到 β-Ga2O3 的无序相变的原子机制","authors":"Charlotte Wouters, Musbah Nofal, Piero Mazzolini, Jijun Zhang, Thilo Remmele, Albert Kwasniewski, Oliver Bierwagen, Martin Albrecht","doi":"10.1063/5.0182500","DOIUrl":null,"url":null,"abstract":"In this paper, we employ in situ transmission electron microscopy to study the disorder–order phase transition from amorphous Ga2O3 to γ-Ga2O3 and then to β-Ga2O3. The in situ studies are complemented by ex situ annealing experiments, of which the results are analyzed by x-ray diffraction and high resolution (scanning) transmission electron microscopy. Amorphous Ga2O3 deposited at 100 °C by molecular beam epitaxy crystallizes at 470 °C in the γ phase (Fd3̄m), which undergoes a phase transition to the β phase above 500 °C. Between 500° and 900 °C, we find a mixture of γ-Ga2O3 and β-Ga2O3 coexisting. Above 950 °C, we find only β-Ga2O3. Through our analyses and by considering symmetry relations, we have constructed a coincidence site lattice of both structures containing a common fcc-type sublattice occupied by oxygen atoms, the cation sites of β-Ga2O3 common to both phases, and partially occupied cation sites in the γ phase corresponding to the interstitial sites in the β phase. We assign the atomic displacements within this lattice responsible for transforming the initially disordered spinel structure with partially occupied cation sites into the well-ordered lattice of β-Ga2O3. We identify this transition as a reconstructive disorder-to-order phase transition, mediated by the exchange of cations to next nearest neighbor sites. Our model not only explains recent observations of the formation of γ-Ga2O3 during implantation for n-type doping and the subsequent recovery of β-Ga2O3 following annealing but also holds potential for inspiring understanding in other materials with similar phase transitions.","PeriodicalId":7985,"journal":{"name":"APL Materials","volume":"13 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unraveling the atomic mechanism of the disorder–order phase transition from γ-Ga2O3 to β-Ga2O3\",\"authors\":\"Charlotte Wouters, Musbah Nofal, Piero Mazzolini, Jijun Zhang, Thilo Remmele, Albert Kwasniewski, Oliver Bierwagen, Martin Albrecht\",\"doi\":\"10.1063/5.0182500\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we employ in situ transmission electron microscopy to study the disorder–order phase transition from amorphous Ga2O3 to γ-Ga2O3 and then to β-Ga2O3. The in situ studies are complemented by ex situ annealing experiments, of which the results are analyzed by x-ray diffraction and high resolution (scanning) transmission electron microscopy. Amorphous Ga2O3 deposited at 100 °C by molecular beam epitaxy crystallizes at 470 °C in the γ phase (Fd3̄m), which undergoes a phase transition to the β phase above 500 °C. Between 500° and 900 °C, we find a mixture of γ-Ga2O3 and β-Ga2O3 coexisting. Above 950 °C, we find only β-Ga2O3. Through our analyses and by considering symmetry relations, we have constructed a coincidence site lattice of both structures containing a common fcc-type sublattice occupied by oxygen atoms, the cation sites of β-Ga2O3 common to both phases, and partially occupied cation sites in the γ phase corresponding to the interstitial sites in the β phase. We assign the atomic displacements within this lattice responsible for transforming the initially disordered spinel structure with partially occupied cation sites into the well-ordered lattice of β-Ga2O3. We identify this transition as a reconstructive disorder-to-order phase transition, mediated by the exchange of cations to next nearest neighbor sites. Our model not only explains recent observations of the formation of γ-Ga2O3 during implantation for n-type doping and the subsequent recovery of β-Ga2O3 following annealing but also holds potential for inspiring understanding in other materials with similar phase transitions.\",\"PeriodicalId\":7985,\"journal\":{\"name\":\"APL Materials\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"APL Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0182500\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"APL Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1063/5.0182500","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Unraveling the atomic mechanism of the disorder–order phase transition from γ-Ga2O3 to β-Ga2O3
In this paper, we employ in situ transmission electron microscopy to study the disorder–order phase transition from amorphous Ga2O3 to γ-Ga2O3 and then to β-Ga2O3. The in situ studies are complemented by ex situ annealing experiments, of which the results are analyzed by x-ray diffraction and high resolution (scanning) transmission electron microscopy. Amorphous Ga2O3 deposited at 100 °C by molecular beam epitaxy crystallizes at 470 °C in the γ phase (Fd3̄m), which undergoes a phase transition to the β phase above 500 °C. Between 500° and 900 °C, we find a mixture of γ-Ga2O3 and β-Ga2O3 coexisting. Above 950 °C, we find only β-Ga2O3. Through our analyses and by considering symmetry relations, we have constructed a coincidence site lattice of both structures containing a common fcc-type sublattice occupied by oxygen atoms, the cation sites of β-Ga2O3 common to both phases, and partially occupied cation sites in the γ phase corresponding to the interstitial sites in the β phase. We assign the atomic displacements within this lattice responsible for transforming the initially disordered spinel structure with partially occupied cation sites into the well-ordered lattice of β-Ga2O3. We identify this transition as a reconstructive disorder-to-order phase transition, mediated by the exchange of cations to next nearest neighbor sites. Our model not only explains recent observations of the formation of γ-Ga2O3 during implantation for n-type doping and the subsequent recovery of β-Ga2O3 following annealing but also holds potential for inspiring understanding in other materials with similar phase transitions.
期刊介绍:
APL Materials features original, experimental research on significant topical issues within the field of materials science. In order to highlight research at the forefront of materials science, emphasis is given to the quality and timeliness of the work. The journal considers theory or calculation when the work is particularly timely and relevant to applications.
In addition to regular articles, the journal also publishes Special Topics, which report on cutting-edge areas in materials science, such as Perovskite Solar Cells, 2D Materials, and Beyond Lithium Ion Batteries.