基于多项式结构选择技术的电磁载荷识别方法

IF 1.2 4区 工程技术 Q3 ACOUSTICS Shock and Vibration Pub Date : 2024-01-13 DOI:10.1155/2024/1842508
Wengui Mao, Shixiong Pei, Jie Guo, Jianhua Li, Buyao Wang
{"title":"基于多项式结构选择技术的电磁载荷识别方法","authors":"Wengui Mao, Shixiong Pei, Jie Guo, Jianhua Li, Buyao Wang","doi":"10.1155/2024/1842508","DOIUrl":null,"url":null,"abstract":"Electromagnetic loads can effectively monitor motor health and improve motor design. Considering the weak correlation of the modal shape and Chebyshev orthogonal polynomial in the space-time independent electromagnetic load identification method, a proposed method combining the polynomial structure selection technique together with limited measured displacement responses is presented, in which an error reduction ratio is used to pick out the significant mode shape matrix and the Chebyshev orthogonal polynomial. The time-history function of the electromagnetic load is reconstructed by combining the significant mode shape matrix and the identified concentrated load through modal transformation, and the corresponding spatial distribution function is fitted by the significant Chebyshev orthogonal polynomial. Eventually, a comparative numerical study considering the selection of significant components and measurement noise is carried out to prove the effectiveness of the presented method.","PeriodicalId":21915,"journal":{"name":"Shock and Vibration","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Electromagnetic Load Identification Method Based on the Polynomial Structure Selection Technique\",\"authors\":\"Wengui Mao, Shixiong Pei, Jie Guo, Jianhua Li, Buyao Wang\",\"doi\":\"10.1155/2024/1842508\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electromagnetic loads can effectively monitor motor health and improve motor design. Considering the weak correlation of the modal shape and Chebyshev orthogonal polynomial in the space-time independent electromagnetic load identification method, a proposed method combining the polynomial structure selection technique together with limited measured displacement responses is presented, in which an error reduction ratio is used to pick out the significant mode shape matrix and the Chebyshev orthogonal polynomial. The time-history function of the electromagnetic load is reconstructed by combining the significant mode shape matrix and the identified concentrated load through modal transformation, and the corresponding spatial distribution function is fitted by the significant Chebyshev orthogonal polynomial. Eventually, a comparative numerical study considering the selection of significant components and measurement noise is carried out to prove the effectiveness of the presented method.\",\"PeriodicalId\":21915,\"journal\":{\"name\":\"Shock and Vibration\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Shock and Vibration\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/1842508\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Shock and Vibration","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2024/1842508","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

摘要

电磁负载可有效监测电机健康状况并改进电机设计。考虑到时空独立电磁载荷识别方法中模态振型和切比雪夫正交多项式的弱相关性,提出了一种结合多项式结构选择技术和有限实测位移响应的方法,其中使用误差减小比来挑选出重要的模态振型矩阵和切比雪夫正交多项式。通过模态变换,结合重要模态振型矩阵和识别出的集中载荷,重建电磁载荷的时史函数,并用重要的切比雪夫正交多项式拟合相应的空间分布函数。最后,考虑到重要分量和测量噪声的选择,进行了数值对比研究,以证明所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Electromagnetic Load Identification Method Based on the Polynomial Structure Selection Technique
Electromagnetic loads can effectively monitor motor health and improve motor design. Considering the weak correlation of the modal shape and Chebyshev orthogonal polynomial in the space-time independent electromagnetic load identification method, a proposed method combining the polynomial structure selection technique together with limited measured displacement responses is presented, in which an error reduction ratio is used to pick out the significant mode shape matrix and the Chebyshev orthogonal polynomial. The time-history function of the electromagnetic load is reconstructed by combining the significant mode shape matrix and the identified concentrated load through modal transformation, and the corresponding spatial distribution function is fitted by the significant Chebyshev orthogonal polynomial. Eventually, a comparative numerical study considering the selection of significant components and measurement noise is carried out to prove the effectiveness of the presented method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Shock and Vibration
Shock and Vibration 物理-工程:机械
CiteScore
3.40
自引率
6.20%
发文量
384
审稿时长
3 months
期刊介绍: Shock and Vibration publishes papers on all aspects of shock and vibration, especially in relation to civil, mechanical and aerospace engineering applications, as well as transport, materials and geoscience. Papers may be theoretical or experimental, and either fundamental or highly applied.
期刊最新文献
Control Effect Analysis and Engineering Application of Anchor Cable Beam-Truss Structure on Large-Deformation Roadway in Deep Coal Mine Study on Ultrasonic Characteristics and Prediction of Rock with Different Pore Sizes Deformation and Failure Evolution Law and Support Optimization of Gob-Side Entry in Weakly Cemented Soft Rock under the Influence of Fault Study on Pretightening Loss Effect of Bolt Support in Deep Soft Rock Roadway Examination of Precast Concrete Movement Subjected to Vibration Employing Mass-Spring Model with Two Convective Masses
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1