Ahmed Salem Heilat, Ahmad Qazza, Raed Hatamleh, Rania Saadeh, Mohammad W. Alomari
{"title":"林不等式在数值积分中的应用","authors":"Ahmed Salem Heilat, Ahmad Qazza, Raed Hatamleh, Rania Saadeh, Mohammad W. Alomari","doi":"10.1515/math-2023-0162","DOIUrl":null,"url":null,"abstract":"This study systematically develops error estimates tailored to a specific set of general quadrature rules that exclusively incorporate first derivatives. Moreover, it introduces refined versions of select generalized Ostrowski’s type inequalities, enhancing their applicability. Through the skillful application of Hayashi’s celebrated inequality to specific functions, the provided proofs underpin these advancements. Notably, this approach extends its utility to approximate integrals of real functions with bounded first derivatives. Remarkably, it employs Newton-Cotes and Gauss-Legendre quadrature rules, bypassing the need for stringent requirements on higher-order derivatives.","PeriodicalId":48713,"journal":{"name":"Open Mathematics","volume":"32 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An application of Hayashi's inequality in numerical integration\",\"authors\":\"Ahmed Salem Heilat, Ahmad Qazza, Raed Hatamleh, Rania Saadeh, Mohammad W. Alomari\",\"doi\":\"10.1515/math-2023-0162\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study systematically develops error estimates tailored to a specific set of general quadrature rules that exclusively incorporate first derivatives. Moreover, it introduces refined versions of select generalized Ostrowski’s type inequalities, enhancing their applicability. Through the skillful application of Hayashi’s celebrated inequality to specific functions, the provided proofs underpin these advancements. Notably, this approach extends its utility to approximate integrals of real functions with bounded first derivatives. Remarkably, it employs Newton-Cotes and Gauss-Legendre quadrature rules, bypassing the need for stringent requirements on higher-order derivatives.\",\"PeriodicalId\":48713,\"journal\":{\"name\":\"Open Mathematics\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/math-2023-0162\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/math-2023-0162","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
An application of Hayashi's inequality in numerical integration
This study systematically develops error estimates tailored to a specific set of general quadrature rules that exclusively incorporate first derivatives. Moreover, it introduces refined versions of select generalized Ostrowski’s type inequalities, enhancing their applicability. Through the skillful application of Hayashi’s celebrated inequality to specific functions, the provided proofs underpin these advancements. Notably, this approach extends its utility to approximate integrals of real functions with bounded first derivatives. Remarkably, it employs Newton-Cotes and Gauss-Legendre quadrature rules, bypassing the need for stringent requirements on higher-order derivatives.
期刊介绍:
Open Mathematics - formerly Central European Journal of Mathematics
Open Mathematics is a fully peer-reviewed, open access, electronic journal that publishes significant, original and relevant works in all areas of mathematics. The journal provides the readers with free, instant, and permanent access to all content worldwide; and the authors with extensive promotion of published articles, long-time preservation, language-correction services, no space constraints and immediate publication.
Open Mathematics is listed in Thomson Reuters - Current Contents/Physical, Chemical and Earth Sciences. Our standard policy requires each paper to be reviewed by at least two Referees and the peer-review process is single-blind.
Aims and Scope
The journal aims at presenting high-impact and relevant research on topics across the full span of mathematics. Coverage includes: