利用超声图像的医学相关特征分析乳腺肿块恶性模式的自动决策支持系统

IF 2.9 2区 工程技术 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Journal of Digital Imaging Pub Date : 2024-01-12 DOI:10.1007/s10278-023-00925-7
Sami Azam, Sidratul Montaha, Mohaimenul Azam Khan Raiaan, A. K. M. Rakibul Haque Rafid, Saddam Hossain Mukta, Mirjam Jonkman
{"title":"利用超声图像的医学相关特征分析乳腺肿块恶性模式的自动决策支持系统","authors":"Sami Azam, Sidratul Montaha, Mohaimenul Azam Khan Raiaan, A. K. M. Rakibul Haque Rafid, Saddam Hossain Mukta, Mirjam Jonkman","doi":"10.1007/s10278-023-00925-7","DOIUrl":null,"url":null,"abstract":"<p>An automated computer-aided approach might aid radiologists in diagnosing breast cancer at a primary stage. This study proposes a novel decision support system to classify breast tumors into benign and malignant based on clinically important features, using ultrasound images. Nine handcrafted features, which align with the clinical markers used by radiologists, are extracted from the region of interest (ROI) of ultrasound images. To validate that these elected clinical markers have a significant impact on predicting the benign and malignant classes, ten machine learning (ML) models are experimented with resulting in test accuracies in the range of 96 to 99%. In addition, four feature selection techniques are explored where two features are eliminated according to the feature ranking score of each feature selection method. The Random Forest classifier is trained with the resultant four feature sets. Results indicate that even when eliminating only two features, the performance of the model is reduced for each feature selection technique. These experiments validate the efficiency and effectiveness of the clinically important features. To develop the decision support system, a probability density function (PDF) graph is generated for each feature in order to find a threshold range to distinguish benign and malignant tumors. Based on the threshold range of particular features, a decision support system is developed in such a way that if at least eight out of nine features are within the threshold range, the image will be denoted as true predicted. With this algorithm, a test accuracy of 99.38% and an F1 Score of 99.05% is achieved, which means that our decision support system outperforms all the previously trained ML models. Moreover, after calculating individual class-based test accuracies, for the benign class, a test accuracy of 99.31% has been attained where only three benign instances are misclassified out of 437 instances, and for the malignant class, a test accuracy of 99.52% has been attained where only one malignant instance is misclassified out of 210 instances. This system is robust, time-effective, and reliable as the radiologists’ criteria are followed and may aid specialists in making a diagnosis.</p>","PeriodicalId":50214,"journal":{"name":"Journal of Digital Imaging","volume":"52 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Automated Decision Support System to Analyze Malignancy Patterns of Breast Masses Employing Medically Relevant Features of Ultrasound Images\",\"authors\":\"Sami Azam, Sidratul Montaha, Mohaimenul Azam Khan Raiaan, A. K. M. Rakibul Haque Rafid, Saddam Hossain Mukta, Mirjam Jonkman\",\"doi\":\"10.1007/s10278-023-00925-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>An automated computer-aided approach might aid radiologists in diagnosing breast cancer at a primary stage. This study proposes a novel decision support system to classify breast tumors into benign and malignant based on clinically important features, using ultrasound images. Nine handcrafted features, which align with the clinical markers used by radiologists, are extracted from the region of interest (ROI) of ultrasound images. To validate that these elected clinical markers have a significant impact on predicting the benign and malignant classes, ten machine learning (ML) models are experimented with resulting in test accuracies in the range of 96 to 99%. In addition, four feature selection techniques are explored where two features are eliminated according to the feature ranking score of each feature selection method. The Random Forest classifier is trained with the resultant four feature sets. Results indicate that even when eliminating only two features, the performance of the model is reduced for each feature selection technique. These experiments validate the efficiency and effectiveness of the clinically important features. To develop the decision support system, a probability density function (PDF) graph is generated for each feature in order to find a threshold range to distinguish benign and malignant tumors. Based on the threshold range of particular features, a decision support system is developed in such a way that if at least eight out of nine features are within the threshold range, the image will be denoted as true predicted. With this algorithm, a test accuracy of 99.38% and an F1 Score of 99.05% is achieved, which means that our decision support system outperforms all the previously trained ML models. Moreover, after calculating individual class-based test accuracies, for the benign class, a test accuracy of 99.31% has been attained where only three benign instances are misclassified out of 437 instances, and for the malignant class, a test accuracy of 99.52% has been attained where only one malignant instance is misclassified out of 210 instances. This system is robust, time-effective, and reliable as the radiologists’ criteria are followed and may aid specialists in making a diagnosis.</p>\",\"PeriodicalId\":50214,\"journal\":{\"name\":\"Journal of Digital Imaging\",\"volume\":\"52 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Digital Imaging\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10278-023-00925-7\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Digital Imaging","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10278-023-00925-7","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

自动计算机辅助方法可帮助放射科医生在乳腺癌初期阶段进行诊断。本研究提出了一种新颖的决策支持系统,利用超声图像根据临床重要特征将乳腺肿瘤分为良性和恶性。从超声图像的感兴趣区(ROI)中提取了九个手工制作的特征,这些特征与放射科医生使用的临床标记一致。为了验证这些选定的临床标记对预测良性和恶性类别有重大影响,对十个机器学习(ML)模型进行了实验,结果测试准确率在 96% 到 99% 之间。此外,还探索了四种特征选择技术,根据每种特征选择方法的特征排序得分剔除两个特征。随机森林分类器使用由此产生的四个特征集进行训练。结果表明,即使只去掉两个特征,每种特征选择技术的模型性能都会降低。这些实验验证了临床重要特征的效率和有效性。为了开发决策支持系统,我们为每个特征生成了概率密度函数(PDF)图,以找到区分良性肿瘤和恶性肿瘤的阈值范围。根据特定特征的阈值范围,开发出一种决策支持系统,即如果九个特征中至少有八个在阈值范围内,则图像将被视为真正的预测图像。通过这种算法,测试准确率达到 99.38%,F1 分数达到 99.05%,这意味着我们的决策支持系统优于之前训练的所有 ML 模型。此外,在计算基于单个类别的测试准确率后,良性类别的测试准确率达到 99.31%,437 个良性实例中只有 3 个被误分类;恶性类别的测试准确率达到 99.52%,210 个恶性实例中只有 1 个被误分类。由于遵循了放射科医生的标准,该系统具有稳健、省时和可靠的特点,可帮助专家做出诊断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Automated Decision Support System to Analyze Malignancy Patterns of Breast Masses Employing Medically Relevant Features of Ultrasound Images

An automated computer-aided approach might aid radiologists in diagnosing breast cancer at a primary stage. This study proposes a novel decision support system to classify breast tumors into benign and malignant based on clinically important features, using ultrasound images. Nine handcrafted features, which align with the clinical markers used by radiologists, are extracted from the region of interest (ROI) of ultrasound images. To validate that these elected clinical markers have a significant impact on predicting the benign and malignant classes, ten machine learning (ML) models are experimented with resulting in test accuracies in the range of 96 to 99%. In addition, four feature selection techniques are explored where two features are eliminated according to the feature ranking score of each feature selection method. The Random Forest classifier is trained with the resultant four feature sets. Results indicate that even when eliminating only two features, the performance of the model is reduced for each feature selection technique. These experiments validate the efficiency and effectiveness of the clinically important features. To develop the decision support system, a probability density function (PDF) graph is generated for each feature in order to find a threshold range to distinguish benign and malignant tumors. Based on the threshold range of particular features, a decision support system is developed in such a way that if at least eight out of nine features are within the threshold range, the image will be denoted as true predicted. With this algorithm, a test accuracy of 99.38% and an F1 Score of 99.05% is achieved, which means that our decision support system outperforms all the previously trained ML models. Moreover, after calculating individual class-based test accuracies, for the benign class, a test accuracy of 99.31% has been attained where only three benign instances are misclassified out of 437 instances, and for the malignant class, a test accuracy of 99.52% has been attained where only one malignant instance is misclassified out of 210 instances. This system is robust, time-effective, and reliable as the radiologists’ criteria are followed and may aid specialists in making a diagnosis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Digital Imaging
Journal of Digital Imaging 医学-核医学
CiteScore
7.50
自引率
6.80%
发文量
192
审稿时长
6-12 weeks
期刊介绍: The Journal of Digital Imaging (JDI) is the official peer-reviewed journal of the Society for Imaging Informatics in Medicine (SIIM). JDI’s goal is to enhance the exchange of knowledge encompassed by the general topic of Imaging Informatics in Medicine such as research and practice in clinical, engineering, and information technologies and techniques in all medical imaging environments. JDI topics are of interest to researchers, developers, educators, physicians, and imaging informatics professionals. Suggested Topics PACS and component systems; imaging informatics for the enterprise; image-enabled electronic medical records; RIS and HIS; digital image acquisition; image processing; image data compression; 3D, visualization, and multimedia; speech recognition; computer-aided diagnosis; facilities design; imaging vocabularies and ontologies; Transforming the Radiological Interpretation Process (TRIP™); DICOM and other standards; workflow and process modeling and simulation; quality assurance; archive integrity and security; teleradiology; digital mammography; and radiological informatics education.
期刊最新文献
Intra-Individual Reproducibility of Automated Abdominal Organ Segmentation—Performance of TotalSegmentator Compared to Human Readers and an Independent nnU-Net Model Teleradiology-Based Referrals for Patients with Gastroenterological Diseases Between Tertiary and Regional Hospitals: A Hospital-to-Hospital Approach Vital Characteristics Cellular Neural Network (VCeNN) for Melanoma Lesion Segmentation: A Biologically Inspired Deep Learning Approach Septic Arthritis Modeling Using Sonographic Fusion with Attention and Selective Transformation: a Preliminary Study Assessment of Age-Related Differences in Lower Leg Muscles Quality Using Radiomic Features of Magnetic Resonance Images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1