Hamid Alavi, Mehdi Seifi, Mahboubeh Rouhollahei, Mehravar Rafati, Masoud Arabfard
{"title":"利用深度学习方法和 X 射线图像主动形状模型的组合,开发自动测量股骨近端几何参数的本地软件","authors":"Hamid Alavi, Mehdi Seifi, Mahboubeh Rouhollahei, Mehravar Rafati, Masoud Arabfard","doi":"10.1007/s10278-023-00953-3","DOIUrl":null,"url":null,"abstract":"<p>Proximal femur geometry is an important risk factor for diagnosing and predicting hip and femur injuries. Hence, the development of an automated approach for measuring these parameters could help physicians with the early identification of hip and femur ailments. This paper presents a technique that combines the active shape model (ASM) and deep learning methodologies. First, the femur boundary is extracted by a deep learning neural network. Then, the femur’s anatomical landmarks are fitted to the extracted border using the ASM method. Finally, the geometric parameters of the proximal femur, including femur neck axis length (FNAL), femur head diameter (FHD), femur neck width (FNW), shaft width (SW), neck shaft angle (NSA), and alpha angle (AA), are calculated by measuring the distances and angles between the landmarks. The dataset of hip radiographic images consisted of 428 images, with 208 men and 220 women. These images were split into training and testing sets for analysis. The deep learning network and ASM were subsequently trained on the training dataset. In the testing dataset, the automatic measurement of FNAL, FHD, FNW, SW, NSA, and AA parameters resulted in mean errors of 1.19%, 1.46%, 2.28%, 2.43%, 1.95%, and 4.53%, respectively.</p>","PeriodicalId":50214,"journal":{"name":"Journal of Digital Imaging","volume":"30 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of Local Software for Automatic Measurement of Geometric Parameters in the Proximal Femur Using a Combination of a Deep Learning Approach and an Active Shape Model on X-ray Images\",\"authors\":\"Hamid Alavi, Mehdi Seifi, Mahboubeh Rouhollahei, Mehravar Rafati, Masoud Arabfard\",\"doi\":\"10.1007/s10278-023-00953-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Proximal femur geometry is an important risk factor for diagnosing and predicting hip and femur injuries. Hence, the development of an automated approach for measuring these parameters could help physicians with the early identification of hip and femur ailments. This paper presents a technique that combines the active shape model (ASM) and deep learning methodologies. First, the femur boundary is extracted by a deep learning neural network. Then, the femur’s anatomical landmarks are fitted to the extracted border using the ASM method. Finally, the geometric parameters of the proximal femur, including femur neck axis length (FNAL), femur head diameter (FHD), femur neck width (FNW), shaft width (SW), neck shaft angle (NSA), and alpha angle (AA), are calculated by measuring the distances and angles between the landmarks. The dataset of hip radiographic images consisted of 428 images, with 208 men and 220 women. These images were split into training and testing sets for analysis. The deep learning network and ASM were subsequently trained on the training dataset. In the testing dataset, the automatic measurement of FNAL, FHD, FNW, SW, NSA, and AA parameters resulted in mean errors of 1.19%, 1.46%, 2.28%, 2.43%, 1.95%, and 4.53%, respectively.</p>\",\"PeriodicalId\":50214,\"journal\":{\"name\":\"Journal of Digital Imaging\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Digital Imaging\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10278-023-00953-3\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Digital Imaging","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10278-023-00953-3","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Development of Local Software for Automatic Measurement of Geometric Parameters in the Proximal Femur Using a Combination of a Deep Learning Approach and an Active Shape Model on X-ray Images
Proximal femur geometry is an important risk factor for diagnosing and predicting hip and femur injuries. Hence, the development of an automated approach for measuring these parameters could help physicians with the early identification of hip and femur ailments. This paper presents a technique that combines the active shape model (ASM) and deep learning methodologies. First, the femur boundary is extracted by a deep learning neural network. Then, the femur’s anatomical landmarks are fitted to the extracted border using the ASM method. Finally, the geometric parameters of the proximal femur, including femur neck axis length (FNAL), femur head diameter (FHD), femur neck width (FNW), shaft width (SW), neck shaft angle (NSA), and alpha angle (AA), are calculated by measuring the distances and angles between the landmarks. The dataset of hip radiographic images consisted of 428 images, with 208 men and 220 women. These images were split into training and testing sets for analysis. The deep learning network and ASM were subsequently trained on the training dataset. In the testing dataset, the automatic measurement of FNAL, FHD, FNW, SW, NSA, and AA parameters resulted in mean errors of 1.19%, 1.46%, 2.28%, 2.43%, 1.95%, and 4.53%, respectively.
期刊介绍:
The Journal of Digital Imaging (JDI) is the official peer-reviewed journal of the Society for Imaging Informatics in Medicine (SIIM). JDI’s goal is to enhance the exchange of knowledge encompassed by the general topic of Imaging Informatics in Medicine such as research and practice in clinical, engineering, and information technologies and techniques in all medical imaging environments. JDI topics are of interest to researchers, developers, educators, physicians, and imaging informatics professionals.
Suggested Topics
PACS and component systems; imaging informatics for the enterprise; image-enabled electronic medical records; RIS and HIS; digital image acquisition; image processing; image data compression; 3D, visualization, and multimedia; speech recognition; computer-aided diagnosis; facilities design; imaging vocabularies and ontologies; Transforming the Radiological Interpretation Process (TRIP™); DICOM and other standards; workflow and process modeling and simulation; quality assurance; archive integrity and security; teleradiology; digital mammography; and radiological informatics education.