{"title":"骨骼肌中 SERCA1 的过表达可减轻肌肉萎缩并改善 ALS 小鼠模型的运动功能。","authors":"Davi A G Mázala, Dapeng Chen, Eva R Chin","doi":"10.3233/JND-230123","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Amyotrophic lateral sclerosis (ALS) is characterized by progressive loss of muscle mass and muscle function. Previous work from our lab demonstrated that skeletal muscles from a mouse model of ALS show elevated intracellular calcium (Ca2+) levels and heightened endoplasmic reticulum (ER) stress.</p><p><strong>Objective: </strong>To investigate whether overexpression of sarcoplasmic reticulum (SR) Ca2+ ATPase 1 (SERCA1) in skeletal muscle would improve intracellular Ca2+ handling, attenuate ER stress, and improve motor function ALS transgenic mice.</p><p><strong>Methods: </strong>B6SJL-Tg (SOD1*G93A)1Gur/J (ALS-Tg) mice were bred with skeletal muscle α-actinin SERCA1 overexpressing mice to generate wild type (WT), SERCA1 overexpression (WT/+SERCA1), ALS-Tg, and SERCA1 overexpressing ALS-Tg (ALS-Tg/+SERCA1) mice. Motor function (grip test) was assessed weekly and skeletal muscles were harvested at 16 weeks of age to evaluate muscle mass, SR-Ca2+ ATPase activity, levels of SERCA1 and ER stress proteins - protein disulfide isomerase (PDI), Grp78/BiP, and C/EBP homologous protein (CHOP). Single muscle fibers were also isolated from the flexor digitorum brevis muscle to assess changes in resting and peak Fura-2 ratios.</p><p><strong>Results: </strong>ALS-Tg/+SERCA1 mice showed improved motor function, delayed onset of disease, and improved muscle mass compared to ALS-Tg. Further, ALS-Tg/+SERCA1 mice returned levels of SERCA1 protein and SR-Ca2+ ATPase activity back to levels in WT mice. Unexpectedly, SERCA-1 overexpression increased levels of the ER stress maker Grp78/BiP in both WT and ALS-Tg mice, while not altering protein levels of PDI or CHOP. Lastly, single muscle fibers from ALS-Tg/+SERCA1 had similar resting but lower peak Fura-2 levels (at 30 Hz and 100 Hz) compared to ALS-Tg mice.</p><p><strong>Conclusions: </strong>These data indicate that SERCA1 overexpression attenuates the progressive loss of muscle mass and maintains motor function in ALS-Tg mice while not lowering resting Ca2+ levels or ER stress.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10977371/pdf/","citationCount":"0","resultStr":"{\"title\":\"SERCA1 Overexpression in Skeletal Muscle Attenuates Muscle Atrophy and Improves Motor Function in a Mouse Model of ALS.\",\"authors\":\"Davi A G Mázala, Dapeng Chen, Eva R Chin\",\"doi\":\"10.3233/JND-230123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Amyotrophic lateral sclerosis (ALS) is characterized by progressive loss of muscle mass and muscle function. Previous work from our lab demonstrated that skeletal muscles from a mouse model of ALS show elevated intracellular calcium (Ca2+) levels and heightened endoplasmic reticulum (ER) stress.</p><p><strong>Objective: </strong>To investigate whether overexpression of sarcoplasmic reticulum (SR) Ca2+ ATPase 1 (SERCA1) in skeletal muscle would improve intracellular Ca2+ handling, attenuate ER stress, and improve motor function ALS transgenic mice.</p><p><strong>Methods: </strong>B6SJL-Tg (SOD1*G93A)1Gur/J (ALS-Tg) mice were bred with skeletal muscle α-actinin SERCA1 overexpressing mice to generate wild type (WT), SERCA1 overexpression (WT/+SERCA1), ALS-Tg, and SERCA1 overexpressing ALS-Tg (ALS-Tg/+SERCA1) mice. Motor function (grip test) was assessed weekly and skeletal muscles were harvested at 16 weeks of age to evaluate muscle mass, SR-Ca2+ ATPase activity, levels of SERCA1 and ER stress proteins - protein disulfide isomerase (PDI), Grp78/BiP, and C/EBP homologous protein (CHOP). Single muscle fibers were also isolated from the flexor digitorum brevis muscle to assess changes in resting and peak Fura-2 ratios.</p><p><strong>Results: </strong>ALS-Tg/+SERCA1 mice showed improved motor function, delayed onset of disease, and improved muscle mass compared to ALS-Tg. Further, ALS-Tg/+SERCA1 mice returned levels of SERCA1 protein and SR-Ca2+ ATPase activity back to levels in WT mice. Unexpectedly, SERCA-1 overexpression increased levels of the ER stress maker Grp78/BiP in both WT and ALS-Tg mice, while not altering protein levels of PDI or CHOP. Lastly, single muscle fibers from ALS-Tg/+SERCA1 had similar resting but lower peak Fura-2 levels (at 30 Hz and 100 Hz) compared to ALS-Tg mice.</p><p><strong>Conclusions: </strong>These data indicate that SERCA1 overexpression attenuates the progressive loss of muscle mass and maintains motor function in ALS-Tg mice while not lowering resting Ca2+ levels or ER stress.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10977371/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3233/JND-230123\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3233/JND-230123","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
SERCA1 Overexpression in Skeletal Muscle Attenuates Muscle Atrophy and Improves Motor Function in a Mouse Model of ALS.
Background: Amyotrophic lateral sclerosis (ALS) is characterized by progressive loss of muscle mass and muscle function. Previous work from our lab demonstrated that skeletal muscles from a mouse model of ALS show elevated intracellular calcium (Ca2+) levels and heightened endoplasmic reticulum (ER) stress.
Objective: To investigate whether overexpression of sarcoplasmic reticulum (SR) Ca2+ ATPase 1 (SERCA1) in skeletal muscle would improve intracellular Ca2+ handling, attenuate ER stress, and improve motor function ALS transgenic mice.
Methods: B6SJL-Tg (SOD1*G93A)1Gur/J (ALS-Tg) mice were bred with skeletal muscle α-actinin SERCA1 overexpressing mice to generate wild type (WT), SERCA1 overexpression (WT/+SERCA1), ALS-Tg, and SERCA1 overexpressing ALS-Tg (ALS-Tg/+SERCA1) mice. Motor function (grip test) was assessed weekly and skeletal muscles were harvested at 16 weeks of age to evaluate muscle mass, SR-Ca2+ ATPase activity, levels of SERCA1 and ER stress proteins - protein disulfide isomerase (PDI), Grp78/BiP, and C/EBP homologous protein (CHOP). Single muscle fibers were also isolated from the flexor digitorum brevis muscle to assess changes in resting and peak Fura-2 ratios.
Results: ALS-Tg/+SERCA1 mice showed improved motor function, delayed onset of disease, and improved muscle mass compared to ALS-Tg. Further, ALS-Tg/+SERCA1 mice returned levels of SERCA1 protein and SR-Ca2+ ATPase activity back to levels in WT mice. Unexpectedly, SERCA-1 overexpression increased levels of the ER stress maker Grp78/BiP in both WT and ALS-Tg mice, while not altering protein levels of PDI or CHOP. Lastly, single muscle fibers from ALS-Tg/+SERCA1 had similar resting but lower peak Fura-2 levels (at 30 Hz and 100 Hz) compared to ALS-Tg mice.
Conclusions: These data indicate that SERCA1 overexpression attenuates the progressive loss of muscle mass and maintains motor function in ALS-Tg mice while not lowering resting Ca2+ levels or ER stress.