通过调节 miR-145 的表达下调 circ_0016760 对七氟烷诱导的老年大鼠神经损伤的保护作用

IF 1.4 4区 医学 Q4 NEUROSCIENCES Acta neurobiologiae experimentalis Pub Date : 2023-12-01 DOI:10.55782/ane-2023-2464
Peiyu Shuai, Zhihong Hu, Wei Li, Guoliang You, Zhiye Liu, Niandong Zheng
{"title":"通过调节 miR-145 的表达下调 circ_0016760 对七氟烷诱导的老年大鼠神经损伤的保护作用","authors":"Peiyu Shuai, Zhihong Hu, Wei Li, Guoliang You, Zhiye Liu, Niandong Zheng","doi":"10.55782/ane-2023-2464","DOIUrl":null,"url":null,"abstract":"<p><p>Sevoflurane can produce toxicity to the hippocampal tissues of brain, leading to nerve damage, causing learning and cognitive dysfunction. CircRNAs have been indicated to act as a key mediator in anesthetic neurotoxicity. This study focused on the effect of circ_0016760 on sevoflurane‑induced neurological impairment. The GEO database (GSE147277) and RT‑qPCR were used to predict and  measure the circ_0016760 expression. The interaction of circ_0016760 and miR‑145 was verified by dual‑luciferase reporter assay. The CCK‑8 assay, flow cytometry, ELISA, ROS kit, MWM test were carried out to measure the cell viability, apoptosis, inflammation indicators, ROS level, and cognitive and memory function of the rats. Sevoflurane exacerbated neurotoxicity by restraining cell viability, inducing cell apoptosis, neuroinflammation, and ROS generation, and causing learning and cognitive dysfunction. Circ_0016760 expression was increased in POCD patients from the GEO database and upregulated after sevoflurane exposure. miR‑145 was a target miRNA of circ_0016760. Silencing of circ_0016760 weakened the effect of sevoflurane on cell viability, cell apoptosis, inflammation‑related factors, oxidative stress, which could be reversed by miR‑145 inhibitor. The animal experiments results showed that circ_0016760 played a protective effect on regulating the cognitive behavior of sevoflurane‑treated aged rats, expression of inflammation cytokine, and oxidative stress factors through targeting miR‑145 in sevoflurane‑treated aged rat's hippocampal neurons. Our results revealed that silencing of circ_0016760 attenuated sevoflurane‑induced hippocampal neuron injury by regulating miR‑145 expression, which may provide potential insights into the treatment of sevoflurane‑induced neurological impairment.</p>","PeriodicalId":7032,"journal":{"name":"Acta neurobiologiae experimentalis","volume":"83 4","pages":"377-385"},"PeriodicalIF":1.4000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The protective role of circ_0016760 downregulation against sevoflurane‑induced neurological impairment via modulating miR‑145 expression in aged rats.\",\"authors\":\"Peiyu Shuai, Zhihong Hu, Wei Li, Guoliang You, Zhiye Liu, Niandong Zheng\",\"doi\":\"10.55782/ane-2023-2464\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Sevoflurane can produce toxicity to the hippocampal tissues of brain, leading to nerve damage, causing learning and cognitive dysfunction. CircRNAs have been indicated to act as a key mediator in anesthetic neurotoxicity. This study focused on the effect of circ_0016760 on sevoflurane‑induced neurological impairment. The GEO database (GSE147277) and RT‑qPCR were used to predict and  measure the circ_0016760 expression. The interaction of circ_0016760 and miR‑145 was verified by dual‑luciferase reporter assay. The CCK‑8 assay, flow cytometry, ELISA, ROS kit, MWM test were carried out to measure the cell viability, apoptosis, inflammation indicators, ROS level, and cognitive and memory function of the rats. Sevoflurane exacerbated neurotoxicity by restraining cell viability, inducing cell apoptosis, neuroinflammation, and ROS generation, and causing learning and cognitive dysfunction. Circ_0016760 expression was increased in POCD patients from the GEO database and upregulated after sevoflurane exposure. miR‑145 was a target miRNA of circ_0016760. Silencing of circ_0016760 weakened the effect of sevoflurane on cell viability, cell apoptosis, inflammation‑related factors, oxidative stress, which could be reversed by miR‑145 inhibitor. The animal experiments results showed that circ_0016760 played a protective effect on regulating the cognitive behavior of sevoflurane‑treated aged rats, expression of inflammation cytokine, and oxidative stress factors through targeting miR‑145 in sevoflurane‑treated aged rat's hippocampal neurons. Our results revealed that silencing of circ_0016760 attenuated sevoflurane‑induced hippocampal neuron injury by regulating miR‑145 expression, which may provide potential insights into the treatment of sevoflurane‑induced neurological impairment.</p>\",\"PeriodicalId\":7032,\"journal\":{\"name\":\"Acta neurobiologiae experimentalis\",\"volume\":\"83 4\",\"pages\":\"377-385\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta neurobiologiae experimentalis\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.55782/ane-2023-2464\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta neurobiologiae experimentalis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.55782/ane-2023-2464","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

七氟醚会对大脑海马组织产生毒性,导致神经损伤,造成学习和认知功能障碍。有研究表明,循环RNA是麻醉性神经毒性的关键介质。本研究的重点是 circ_0016760 对七氟烷诱导的神经损伤的影响。研究利用 GEO 数据库(GSE147277)和 RT-qPCR 预测并测量了 circ_0016760 的表达。通过双荧光素酶报告实验验证了 circ_0016760 和 miR-145 的相互作用。CCK-8测定、流式细胞术、ELISA、ROS试剂盒、MWM测试等方法检测了大鼠的细胞活力、细胞凋亡、炎症指标、ROS水平以及认知和记忆功能。结果表明:七氟烷通过抑制细胞活力、诱导细胞凋亡、神经炎症和ROS生成,加剧了神经毒性,并导致学习和认知功能障碍。在 GEO 数据库中,Circ_0016760 在 POCD 患者中的表达增加,并在暴露于七氟烷后上调,miR-145 是 circ_0016760 的靶 miRNA。沉默circ_0016760会减弱七氟烷对细胞活力、细胞凋亡、炎症相关因子、氧化应激的影响,而miR-145抑制剂可以逆转这种影响。动物实验结果表明,circ_0016760通过靶向七氟醚处理的老年大鼠海马神经元中的miR-145,对调节七氟醚处理的老年大鼠的认知行为、炎症细胞因子和氧化应激因子的表达起到了保护作用。我们的研究结果表明,沉默circ_0016760可通过调节miR-145的表达减轻七氟烷诱导的海马神经元损伤,这可能为治疗七氟烷诱导的神经损伤提供了潜在的启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The protective role of circ_0016760 downregulation against sevoflurane‑induced neurological impairment via modulating miR‑145 expression in aged rats.

Sevoflurane can produce toxicity to the hippocampal tissues of brain, leading to nerve damage, causing learning and cognitive dysfunction. CircRNAs have been indicated to act as a key mediator in anesthetic neurotoxicity. This study focused on the effect of circ_0016760 on sevoflurane‑induced neurological impairment. The GEO database (GSE147277) and RT‑qPCR were used to predict and  measure the circ_0016760 expression. The interaction of circ_0016760 and miR‑145 was verified by dual‑luciferase reporter assay. The CCK‑8 assay, flow cytometry, ELISA, ROS kit, MWM test were carried out to measure the cell viability, apoptosis, inflammation indicators, ROS level, and cognitive and memory function of the rats. Sevoflurane exacerbated neurotoxicity by restraining cell viability, inducing cell apoptosis, neuroinflammation, and ROS generation, and causing learning and cognitive dysfunction. Circ_0016760 expression was increased in POCD patients from the GEO database and upregulated after sevoflurane exposure. miR‑145 was a target miRNA of circ_0016760. Silencing of circ_0016760 weakened the effect of sevoflurane on cell viability, cell apoptosis, inflammation‑related factors, oxidative stress, which could be reversed by miR‑145 inhibitor. The animal experiments results showed that circ_0016760 played a protective effect on regulating the cognitive behavior of sevoflurane‑treated aged rats, expression of inflammation cytokine, and oxidative stress factors through targeting miR‑145 in sevoflurane‑treated aged rat's hippocampal neurons. Our results revealed that silencing of circ_0016760 attenuated sevoflurane‑induced hippocampal neuron injury by regulating miR‑145 expression, which may provide potential insights into the treatment of sevoflurane‑induced neurological impairment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
7.10%
发文量
40
审稿时长
>12 weeks
期刊介绍: Acta Neurobiologiae Experimentalis (ISSN: 0065-1400 (print), eISSN: 1689-0035) covers all aspects of neuroscience, from molecular and cellular neurobiology of the nervous system, through cellular and systems electrophysiology, brain imaging, functional and comparative neuroanatomy, development and evolution of the nervous system, behavior and neuropsychology to brain aging and pathology, including neuroinformatics and modeling.
期刊最新文献
Different faces of autism: Patients with mutations in PTEN and FMR1 genes. Leflunomide exerts neuroprotective effects in an MPTP‑treated mouse model of Parkinsonism. Piperine relieves neuropathic pain induced by paclitaxel in mice. Response of miRNA to treatment with Hypericum perforatum L. oil in multiple sclerosis. The integral role of PTEN in brain function: from neurogenesis to synaptic plasticity and social behavior.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1