使用标准化术语将通用数据模型中的肿瘤学相关概念语义映射到儿科癌症数据模型。

AMIA ... Annual Symposium proceedings. AMIA Symposium Pub Date : 2024-01-11 eCollection Date: 2023-01-01
Bradley Carlson, Michael Watkins, Mei Li, Brian Furner, Ellen Cohen, Samuel L Volchenboum
{"title":"使用标准化术语将通用数据模型中的肿瘤学相关概念语义映射到儿科癌症数据模型。","authors":"Bradley Carlson, Michael Watkins, Mei Li, Brian Furner, Ellen Cohen, Samuel L Volchenboum","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The Pediatric Cancer Data Commons (PCDC) comprises an international community whose ironclad commitment to data sharing is combatting pediatric cancer in an unprecedented way. The byproduct of their data sharing efforts is a gold-standard consensus data model covering many types of pediatric cancer. This article describes an effort to utilize SSSOM, an emerging specification for semantically-rich data mappings, to provide a \"hub and spoke\" model of mappings from several common data models (CDMs) to the PCDC data model. This provides important contributions to the research community, including: 1) a clear view of the current coverage of these CDMs in the domain of pediatric oncology, and 2) a demonstration of creating standardized mappings. These mappings can allow downstream crosswalk for data transformation and enhance data sharing. This can guide those who currently create and maintain brittle ad hoc data mappings in order to utilize the growing volume of viable research data.</p>","PeriodicalId":72180,"journal":{"name":"AMIA ... Annual Symposium proceedings. AMIA Symposium","volume":"2023 ","pages":"874-883"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10785885/pdf/","citationCount":"0","resultStr":"{\"title\":\"Using A Standardized Nomenclature to Semantically Map Oncology-Related Concepts from Common Data Models to a Pediatric Cancer Data Model.\",\"authors\":\"Bradley Carlson, Michael Watkins, Mei Li, Brian Furner, Ellen Cohen, Samuel L Volchenboum\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The Pediatric Cancer Data Commons (PCDC) comprises an international community whose ironclad commitment to data sharing is combatting pediatric cancer in an unprecedented way. The byproduct of their data sharing efforts is a gold-standard consensus data model covering many types of pediatric cancer. This article describes an effort to utilize SSSOM, an emerging specification for semantically-rich data mappings, to provide a \\\"hub and spoke\\\" model of mappings from several common data models (CDMs) to the PCDC data model. This provides important contributions to the research community, including: 1) a clear view of the current coverage of these CDMs in the domain of pediatric oncology, and 2) a demonstration of creating standardized mappings. These mappings can allow downstream crosswalk for data transformation and enhance data sharing. This can guide those who currently create and maintain brittle ad hoc data mappings in order to utilize the growing volume of viable research data.</p>\",\"PeriodicalId\":72180,\"journal\":{\"name\":\"AMIA ... Annual Symposium proceedings. AMIA Symposium\",\"volume\":\"2023 \",\"pages\":\"874-883\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10785885/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AMIA ... Annual Symposium proceedings. AMIA Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMIA ... Annual Symposium proceedings. AMIA Symposium","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

儿科癌症数据共享中心(PCDC)由一个国际社区组成,其对数据共享的坚定承诺正在以前所未有的方式与儿科癌症作斗争。他们数据共享努力的副产品是一个黄金标准的共识数据模型,涵盖多种类型的儿科癌症。本文介绍了利用 SSSOM(一种新兴的语义丰富的数据映射规范)提供从多个通用数据模型(CDM)到 PCDC 数据模型的 "辐辏 "映射模型的工作。这为研究界做出了重要贡献,包括1) 清楚地了解这些 CDM 目前在儿科肿瘤学领域的覆盖范围,以及 2) 展示如何创建标准化映射。这些映射可以实现数据转换的下游交叉,并加强数据共享。这可以为目前创建和维护脆性临时数据映射的人员提供指导,以便利用日益增多的可行研究数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Using A Standardized Nomenclature to Semantically Map Oncology-Related Concepts from Common Data Models to a Pediatric Cancer Data Model.

The Pediatric Cancer Data Commons (PCDC) comprises an international community whose ironclad commitment to data sharing is combatting pediatric cancer in an unprecedented way. The byproduct of their data sharing efforts is a gold-standard consensus data model covering many types of pediatric cancer. This article describes an effort to utilize SSSOM, an emerging specification for semantically-rich data mappings, to provide a "hub and spoke" model of mappings from several common data models (CDMs) to the PCDC data model. This provides important contributions to the research community, including: 1) a clear view of the current coverage of these CDMs in the domain of pediatric oncology, and 2) a demonstration of creating standardized mappings. These mappings can allow downstream crosswalk for data transformation and enhance data sharing. This can guide those who currently create and maintain brittle ad hoc data mappings in order to utilize the growing volume of viable research data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ethicara for Responsible AI in Healthcare: A System for Bias Detection and AI Risk Management. Towards Fair Patient-Trial Matching via Patient-Criterion Level Fairness Constraint. Towards Understanding the Generalization of Medical Text-to-SQL Models and Datasets. Transferable and Interpretable Treatment Effectiveness Prediction for Ovarian Cancer via Multimodal Deep Learning. Understanding Cancer Caregiving and Predicting Burden: An Analytics and Machine Learning Approach.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1