从临床笔记中检测护理人员的态度。

AMIA ... Annual Symposium proceedings. AMIA Symposium Pub Date : 2024-01-11 eCollection Date: 2023-01-01
Gaetano Manzo, Leo Anthony Celi, Yasmeen Shabazz, Rory Mulcahey, Lorenzo Jaime Flores, Dina Demner-Fushman
{"title":"从临床笔记中检测护理人员的态度。","authors":"Gaetano Manzo, Leo Anthony Celi, Yasmeen Shabazz, Rory Mulcahey, Lorenzo Jaime Flores, Dina Demner-Fushman","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Caregivers' attitudes impact healthcare quality and disparities. Clinical notes contain highly specialized and ambiguous language that requires extensive domain knowledge to understand, and using negative language does not necessarily imply a negative attitude. This study discusses the challenge of detecting caregivers' attitudes from their clinical notes. To address these challenges, we annotate MIMIC clinical notes and train state-of-the-art language models from the Hugging Face platform. The study focuses on the Neonatal Intensive Care Unit and evaluates models in zero-shot, few-shot, and fully-trained scenarios. Among the chosen models, <i>RoBERTa</i> identifies caregivers' attitudes from clinical notes with an F1-score of 0.75. This approach not only enhances patient satisfaction, but opens up exciting possibilities for detecting and preventing care provider syndromes, such as fatigue, stress, and burnout. The paper concludes by discussing limitations and potential future work.</p>","PeriodicalId":72180,"journal":{"name":"AMIA ... Annual Symposium proceedings. AMIA Symposium","volume":"2023 ","pages":"1125-1134"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10785866/pdf/","citationCount":"0","resultStr":"{\"title\":\"Caregivers Attitude Detection From Clinical Notes.\",\"authors\":\"Gaetano Manzo, Leo Anthony Celi, Yasmeen Shabazz, Rory Mulcahey, Lorenzo Jaime Flores, Dina Demner-Fushman\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Caregivers' attitudes impact healthcare quality and disparities. Clinical notes contain highly specialized and ambiguous language that requires extensive domain knowledge to understand, and using negative language does not necessarily imply a negative attitude. This study discusses the challenge of detecting caregivers' attitudes from their clinical notes. To address these challenges, we annotate MIMIC clinical notes and train state-of-the-art language models from the Hugging Face platform. The study focuses on the Neonatal Intensive Care Unit and evaluates models in zero-shot, few-shot, and fully-trained scenarios. Among the chosen models, <i>RoBERTa</i> identifies caregivers' attitudes from clinical notes with an F1-score of 0.75. This approach not only enhances patient satisfaction, but opens up exciting possibilities for detecting and preventing care provider syndromes, such as fatigue, stress, and burnout. The paper concludes by discussing limitations and potential future work.</p>\",\"PeriodicalId\":72180,\"journal\":{\"name\":\"AMIA ... Annual Symposium proceedings. AMIA Symposium\",\"volume\":\"2023 \",\"pages\":\"1125-1134\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10785866/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AMIA ... Annual Symposium proceedings. AMIA Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMIA ... Annual Symposium proceedings. AMIA Symposium","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

护理人员的态度会影响医疗质量和差异。临床笔记包含高度专业化和含糊不清的语言,需要广泛的领域知识才能理解,而使用负面语言并不一定意味着态度消极。本研究讨论了从护理人员的临床笔记中检测其态度所面临的挑战。为了应对这些挑战,我们对 MIMIC 临床笔记进行了注释,并从 Hugging Face 平台训练了最先进的语言模型。本研究以新生儿重症监护室为重点,评估了零镜头、少量镜头和完全训练场景下的模型。在所选模型中,RoBERTa 能从临床笔记中识别护理人员的态度,F1 分数为 0.75。这种方法不仅提高了患者满意度,而且为检测和预防护理人员综合症(如疲劳、压力和职业倦怠)提供了令人兴奋的可能性。论文最后讨论了局限性和未来可能开展的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Caregivers Attitude Detection From Clinical Notes.

Caregivers' attitudes impact healthcare quality and disparities. Clinical notes contain highly specialized and ambiguous language that requires extensive domain knowledge to understand, and using negative language does not necessarily imply a negative attitude. This study discusses the challenge of detecting caregivers' attitudes from their clinical notes. To address these challenges, we annotate MIMIC clinical notes and train state-of-the-art language models from the Hugging Face platform. The study focuses on the Neonatal Intensive Care Unit and evaluates models in zero-shot, few-shot, and fully-trained scenarios. Among the chosen models, RoBERTa identifies caregivers' attitudes from clinical notes with an F1-score of 0.75. This approach not only enhances patient satisfaction, but opens up exciting possibilities for detecting and preventing care provider syndromes, such as fatigue, stress, and burnout. The paper concludes by discussing limitations and potential future work.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ethicara for Responsible AI in Healthcare: A System for Bias Detection and AI Risk Management. Towards Fair Patient-Trial Matching via Patient-Criterion Level Fairness Constraint. Towards Understanding the Generalization of Medical Text-to-SQL Models and Datasets. Transferable and Interpretable Treatment Effectiveness Prediction for Ovarian Cancer via Multimodal Deep Learning. Understanding Cancer Caregiving and Predicting Burden: An Analytics and Machine Learning Approach.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1