利用 3D 切片机和全息医学图像平台为多发性创伤患者创建增强现实全息图像。

AMIA ... Annual Symposium proceedings. AMIA Symposium Pub Date : 2024-01-11 eCollection Date: 2023-01-01
Wei-Shao Sun, Chun-Chuan Sun, Lorenzo Porta, Ting-Kai Yang, Shih-Hao Su, Shih-Hung Liu, Tsung-Hsin Chou, Shyr-Chyr Chen, Joshua Ho, Chien-Chang Lee
{"title":"利用 3D 切片机和全息医学图像平台为多发性创伤患者创建增强现实全息图像。","authors":"Wei-Shao Sun, Chun-Chuan Sun, Lorenzo Porta, Ting-Kai Yang, Shih-Hao Su, Shih-Hung Liu, Tsung-Hsin Chou, Shyr-Chyr Chen, Joshua Ho, Chien-Chang Lee","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>In traumatology physicians heavily rely on computed tomography (CT) 2D axial scans to identify and assess the patient's injuries after an accident. However, in some cases it can be difficult to rigorously evaluate the real extent of the damage considering only the bidimensional slices produced by the CT, and some life-threatening lesions can be missed. With the development of 3D holographic rendering and extended reality (XR) technology, CT images can be projected in a 3D format through head-mounted holographic displays, allowing multi-view from different angles and interactive slice intersections, thus increasing anatomical intelligibility. In this article, we explain how to import CT scans into holographic displays for 3D visualization and further compare the methodolgy with traditional bidimensional reading.</p>","PeriodicalId":72180,"journal":{"name":"AMIA ... Annual Symposium proceedings. AMIA Symposium","volume":"2023 ","pages":"663-668"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10785888/pdf/","citationCount":"0","resultStr":"{\"title\":\"Creating Augmented Reality Holograms for Polytrauma Patients Using 3D Slicer and Holomedicine Medical Image Platform.\",\"authors\":\"Wei-Shao Sun, Chun-Chuan Sun, Lorenzo Porta, Ting-Kai Yang, Shih-Hao Su, Shih-Hung Liu, Tsung-Hsin Chou, Shyr-Chyr Chen, Joshua Ho, Chien-Chang Lee\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In traumatology physicians heavily rely on computed tomography (CT) 2D axial scans to identify and assess the patient's injuries after an accident. However, in some cases it can be difficult to rigorously evaluate the real extent of the damage considering only the bidimensional slices produced by the CT, and some life-threatening lesions can be missed. With the development of 3D holographic rendering and extended reality (XR) technology, CT images can be projected in a 3D format through head-mounted holographic displays, allowing multi-view from different angles and interactive slice intersections, thus increasing anatomical intelligibility. In this article, we explain how to import CT scans into holographic displays for 3D visualization and further compare the methodolgy with traditional bidimensional reading.</p>\",\"PeriodicalId\":72180,\"journal\":{\"name\":\"AMIA ... Annual Symposium proceedings. AMIA Symposium\",\"volume\":\"2023 \",\"pages\":\"663-668\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10785888/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AMIA ... Annual Symposium proceedings. AMIA Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMIA ... Annual Symposium proceedings. AMIA Symposium","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在创伤科,医生主要依靠计算机断层扫描(CT)二维轴向扫描来识别和评估事故后病人的损伤。然而,在某些情况下,仅凭计算机断层扫描产生的二维切片很难严格评估损伤的真实程度,一些危及生命的病变可能会被遗漏。随着三维全息渲染和扩展现实(XR)技术的发展,CT 图像可以通过头戴式全息显示器以三维格式投射出来,实现不同角度的多视角观察和切片交汇互动,从而提高解剖的可理解性。本文将介绍如何将 CT 扫描图像导入全息显示器进行三维可视化,并进一步将该方法与传统的二维阅读方法进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Creating Augmented Reality Holograms for Polytrauma Patients Using 3D Slicer and Holomedicine Medical Image Platform.

In traumatology physicians heavily rely on computed tomography (CT) 2D axial scans to identify and assess the patient's injuries after an accident. However, in some cases it can be difficult to rigorously evaluate the real extent of the damage considering only the bidimensional slices produced by the CT, and some life-threatening lesions can be missed. With the development of 3D holographic rendering and extended reality (XR) technology, CT images can be projected in a 3D format through head-mounted holographic displays, allowing multi-view from different angles and interactive slice intersections, thus increasing anatomical intelligibility. In this article, we explain how to import CT scans into holographic displays for 3D visualization and further compare the methodolgy with traditional bidimensional reading.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ethicara for Responsible AI in Healthcare: A System for Bias Detection and AI Risk Management. Towards Fair Patient-Trial Matching via Patient-Criterion Level Fairness Constraint. Towards Understanding the Generalization of Medical Text-to-SQL Models and Datasets. Transferable and Interpretable Treatment Effectiveness Prediction for Ovarian Cancer via Multimodal Deep Learning. Understanding Cancer Caregiving and Predicting Burden: An Analytics and Machine Learning Approach.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1