基于运动的初级保健预防跌倒临床决策支持工具的开发和可用性测试。

AMIA ... Annual Symposium proceedings. AMIA Symposium Pub Date : 2024-01-11 eCollection Date: 2023-01-01
Christian J Tejeda, Pamela M Garabedian, Hannah Rice, Lipika Samal, Nancy K Latham, Patricia C Dykes
{"title":"基于运动的初级保健预防跌倒临床决策支持工具的开发和可用性测试。","authors":"Christian J Tejeda, Pamela M Garabedian, Hannah Rice, Lipika Samal, Nancy K Latham, Patricia C Dykes","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>For older patients, falls are the leading cause offatal and nonfatal injuries. Guidelines recommend that at-risk older adults are referred to appropriate fall-prevention exercise programs, but many do not receive support for fall-risk management in the primary care setting. Advances in health information technology may be able to address this gap. This article describes the development and usability testing of a clinical decision support (CDS) tool for fall prevention exercise. Using rapid qualitative analysis and human-centered design, our team developed and tested the usability of our CDS prototype with primary care team members. Across 31 Health-Information Technology Usability Evaluation Scale surveys, our CDS prototype received a median score of 5.0, mean (SD) of 4.5 (0.8), and a range of 4.1-4.9. This study highlights the features and usability offall prevention CDS for helping primary care providers deliver patient-centeredfall prevention care.</p>","PeriodicalId":72180,"journal":{"name":"AMIA ... Annual Symposium proceedings. AMIA Symposium","volume":"2023 ","pages":"699-708"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10785844/pdf/","citationCount":"0","resultStr":"{\"title\":\"Development and Usability Testing of an Exercise-Based Primary Care Fall Prevention Clinical Decision Support Tool.\",\"authors\":\"Christian J Tejeda, Pamela M Garabedian, Hannah Rice, Lipika Samal, Nancy K Latham, Patricia C Dykes\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>For older patients, falls are the leading cause offatal and nonfatal injuries. Guidelines recommend that at-risk older adults are referred to appropriate fall-prevention exercise programs, but many do not receive support for fall-risk management in the primary care setting. Advances in health information technology may be able to address this gap. This article describes the development and usability testing of a clinical decision support (CDS) tool for fall prevention exercise. Using rapid qualitative analysis and human-centered design, our team developed and tested the usability of our CDS prototype with primary care team members. Across 31 Health-Information Technology Usability Evaluation Scale surveys, our CDS prototype received a median score of 5.0, mean (SD) of 4.5 (0.8), and a range of 4.1-4.9. This study highlights the features and usability offall prevention CDS for helping primary care providers deliver patient-centeredfall prevention care.</p>\",\"PeriodicalId\":72180,\"journal\":{\"name\":\"AMIA ... Annual Symposium proceedings. AMIA Symposium\",\"volume\":\"2023 \",\"pages\":\"699-708\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10785844/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AMIA ... Annual Symposium proceedings. AMIA Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMIA ... Annual Symposium proceedings. AMIA Symposium","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于老年患者来说,跌倒是导致死亡和非死亡伤害的主要原因。指南建议将有风险的老年人转介到适当的预防跌倒锻炼计划中,但许多老年人在初级保健中并没有得到跌倒风险管理方面的支持。医疗信息技术的进步或许能弥补这一不足。本文介绍了防跌倒锻炼临床决策支持(CDS)工具的开发和可用性测试。通过快速定性分析和以人为本的设计,我们的团队与初级保健团队成员一起开发并测试了临床决策支持原型的可用性。在 31 项健康信息技术可用性评估量表调查中,我们的 CDS 原型获得了 5.0 分的中位数,平均分(SD)为 4.5 (0.8),范围为 4.1-4.9。本研究强调了预防坠楼 CDS 的功能和可用性,可帮助初级保健提供者提供以患者为中心的预防坠楼护理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development and Usability Testing of an Exercise-Based Primary Care Fall Prevention Clinical Decision Support Tool.

For older patients, falls are the leading cause offatal and nonfatal injuries. Guidelines recommend that at-risk older adults are referred to appropriate fall-prevention exercise programs, but many do not receive support for fall-risk management in the primary care setting. Advances in health information technology may be able to address this gap. This article describes the development and usability testing of a clinical decision support (CDS) tool for fall prevention exercise. Using rapid qualitative analysis and human-centered design, our team developed and tested the usability of our CDS prototype with primary care team members. Across 31 Health-Information Technology Usability Evaluation Scale surveys, our CDS prototype received a median score of 5.0, mean (SD) of 4.5 (0.8), and a range of 4.1-4.9. This study highlights the features and usability offall prevention CDS for helping primary care providers deliver patient-centeredfall prevention care.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ethicara for Responsible AI in Healthcare: A System for Bias Detection and AI Risk Management. Towards Fair Patient-Trial Matching via Patient-Criterion Level Fairness Constraint. Towards Understanding the Generalization of Medical Text-to-SQL Models and Datasets. Transferable and Interpretable Treatment Effectiveness Prediction for Ovarian Cancer via Multimodal Deep Learning. Understanding Cancer Caregiving and Predicting Burden: An Analytics and Machine Learning Approach.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1