公平合成控制武器研究框架》。

AMIA ... Annual Symposium proceedings. AMIA Symposium Pub Date : 2024-01-11 eCollection Date: 2023-01-01
Naffs Neehal, Vibha Anand, Kristin P Bennett
{"title":"公平合成控制武器研究框架》。","authors":"Naffs Neehal, Vibha Anand, Kristin P Bennett","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Randomized Clinical Trials (RCTs) measure an intervention's efficacy, but they may not be generalizable to a desired target population if the RCT is not equitable. Thus, representativeness of RCTs has become a national priority. Synthetic Controls (SCs) that incorporate observational data into RCTs have shown great potential to produce more efficient studies, but their equity is rarely considered. Here, we examine how to improve treatment effect estimation and equity of a trial by augmenting \"on-trial\" concurrent controls with SCs to form a Hybrid Control Arm (HCA). We introduce FRESCA - a framework to evaluate HCA construction methods using RCT simulations. FRESCA shows that doing propensity and equity adjustment when constructing the HCA leads to accurate population treatment effect estimates while meeting equity goals with potentially less \"on-trial\" patients. This work represents the first investigation of equity in HCA design that provides definitions, metrics, compelling questions, and resources for future work.</p>","PeriodicalId":72180,"journal":{"name":"AMIA ... Annual Symposium proceedings. AMIA Symposium","volume":"2023 ","pages":"530-539"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10785851/pdf/","citationCount":"0","resultStr":"{\"title\":\"Framework for Research in Equitable Synthetic Control Arms.\",\"authors\":\"Naffs Neehal, Vibha Anand, Kristin P Bennett\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Randomized Clinical Trials (RCTs) measure an intervention's efficacy, but they may not be generalizable to a desired target population if the RCT is not equitable. Thus, representativeness of RCTs has become a national priority. Synthetic Controls (SCs) that incorporate observational data into RCTs have shown great potential to produce more efficient studies, but their equity is rarely considered. Here, we examine how to improve treatment effect estimation and equity of a trial by augmenting \\\"on-trial\\\" concurrent controls with SCs to form a Hybrid Control Arm (HCA). We introduce FRESCA - a framework to evaluate HCA construction methods using RCT simulations. FRESCA shows that doing propensity and equity adjustment when constructing the HCA leads to accurate population treatment effect estimates while meeting equity goals with potentially less \\\"on-trial\\\" patients. This work represents the first investigation of equity in HCA design that provides definitions, metrics, compelling questions, and resources for future work.</p>\",\"PeriodicalId\":72180,\"journal\":{\"name\":\"AMIA ... Annual Symposium proceedings. AMIA Symposium\",\"volume\":\"2023 \",\"pages\":\"530-539\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10785851/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AMIA ... Annual Symposium proceedings. AMIA Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMIA ... Annual Symposium proceedings. AMIA Symposium","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随机临床试验(RCT)可以衡量干预措施的效果,但如果 RCT 不公平,则可能无法推广到所需的目标人群。因此,RCT 的代表性已成为国家优先考虑的问题。将观察性数据纳入 RCT 的合成对照(SCs)已显示出巨大的潜力,可以产生更有效的研究,但其公平性却很少得到考虑。在此,我们探讨了如何通过用 SCs 增强 "试验中 "并发对照,形成混合对照臂 (HCA),从而改善治疗效果估计和试验的公平性。我们介绍了 FRESCA--一个利用 RCT 模拟评估 HCA 构建方法的框架。FRESCA 表明,在构建 HCA 时进行倾向性和公平性调整可获得准确的人群治疗效果估计值,同时在可能减少 "试验中 "患者的情况下实现公平目标。这项研究首次对 HCA 设计中的公平性进行了调查,为今后的工作提供了定义、衡量标准、重要问题和资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Framework for Research in Equitable Synthetic Control Arms.

Randomized Clinical Trials (RCTs) measure an intervention's efficacy, but they may not be generalizable to a desired target population if the RCT is not equitable. Thus, representativeness of RCTs has become a national priority. Synthetic Controls (SCs) that incorporate observational data into RCTs have shown great potential to produce more efficient studies, but their equity is rarely considered. Here, we examine how to improve treatment effect estimation and equity of a trial by augmenting "on-trial" concurrent controls with SCs to form a Hybrid Control Arm (HCA). We introduce FRESCA - a framework to evaluate HCA construction methods using RCT simulations. FRESCA shows that doing propensity and equity adjustment when constructing the HCA leads to accurate population treatment effect estimates while meeting equity goals with potentially less "on-trial" patients. This work represents the first investigation of equity in HCA design that provides definitions, metrics, compelling questions, and resources for future work.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ethicara for Responsible AI in Healthcare: A System for Bias Detection and AI Risk Management. Towards Fair Patient-Trial Matching via Patient-Criterion Level Fairness Constraint. Towards Understanding the Generalization of Medical Text-to-SQL Models and Datasets. Transferable and Interpretable Treatment Effectiveness Prediction for Ovarian Cancer via Multimodal Deep Learning. Understanding Cancer Caregiving and Predicting Burden: An Analytics and Machine Learning Approach.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1