利用电子健康记录识别从轻度认知障碍到阿尔茨海默病的以结果为导向的进展亚型。

AMIA ... Annual Symposium proceedings. AMIA Symposium Pub Date : 2024-01-11 eCollection Date: 2023-01-01
Jie Xu, Rui Yin, Yu Huang, Hannah Gao, Yonghui Wu, Jingchuan Guo, Glenn E Smith, Steven T DeKosky, Fei Wang, Yi Guo, Jiang Bian
{"title":"利用电子健康记录识别从轻度认知障碍到阿尔茨海默病的以结果为导向的进展亚型。","authors":"Jie Xu, Rui Yin, Yu Huang, Hannah Gao, Yonghui Wu, Jingchuan Guo, Glenn E Smith, Steven T DeKosky, Fei Wang, Yi Guo, Jiang Bian","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Alzheimer's disease (AD) is a complex heterogeneous neurodegenerative disease that requires an in-depth understanding of its progression pathways and contributing factors to develop effective risk stratification and prevention strategies. In this study, we proposed an outcome-oriented model to identify progression pathways from mild cognitive impairment (MCI) to AD using electronic health records (EHRs) from the OneFlorida+ Clinical Research Consortium. To achieve this, we employed the long short-term memory (LSTM) network to extract relevant information from the sequential records of each patient. The hierarchical agglomerative clustering was then applied to the learned representation to group patients based on their progression subtypes. Our approach identified multiple progression pathways, each of which represented distinct patterns of disease progression from MCI to AD. These pathways can serve as a valuable resource for researchers to understand the factors influencing AD progression and to develop personalized interventions to delay or prevent the onset of the disease.</p>","PeriodicalId":72180,"journal":{"name":"AMIA ... Annual Symposium proceedings. AMIA Symposium","volume":"2023 ","pages":"764-773"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10785946/pdf/","citationCount":"0","resultStr":"{\"title\":\"Identification of Outcome-Oriented Progression Subtypes from Mild Cognitive Impairment to Alzheimer's Disease Using Electronic Health Records.\",\"authors\":\"Jie Xu, Rui Yin, Yu Huang, Hannah Gao, Yonghui Wu, Jingchuan Guo, Glenn E Smith, Steven T DeKosky, Fei Wang, Yi Guo, Jiang Bian\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Alzheimer's disease (AD) is a complex heterogeneous neurodegenerative disease that requires an in-depth understanding of its progression pathways and contributing factors to develop effective risk stratification and prevention strategies. In this study, we proposed an outcome-oriented model to identify progression pathways from mild cognitive impairment (MCI) to AD using electronic health records (EHRs) from the OneFlorida+ Clinical Research Consortium. To achieve this, we employed the long short-term memory (LSTM) network to extract relevant information from the sequential records of each patient. The hierarchical agglomerative clustering was then applied to the learned representation to group patients based on their progression subtypes. Our approach identified multiple progression pathways, each of which represented distinct patterns of disease progression from MCI to AD. These pathways can serve as a valuable resource for researchers to understand the factors influencing AD progression and to develop personalized interventions to delay or prevent the onset of the disease.</p>\",\"PeriodicalId\":72180,\"journal\":{\"name\":\"AMIA ... Annual Symposium proceedings. AMIA Symposium\",\"volume\":\"2023 \",\"pages\":\"764-773\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10785946/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AMIA ... Annual Symposium proceedings. AMIA Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMIA ... Annual Symposium proceedings. AMIA Symposium","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

阿尔茨海默病(AD)是一种复杂的异质性神经退行性疾病,需要深入了解其进展途径和诱因,以制定有效的风险分层和预防策略。在本研究中,我们提出了一个以结果为导向的模型,利用 OneFlorida+ 临床研究联盟的电子健康记录(EHR)来识别从轻度认知障碍(MCI)到老年痴呆症(AD)的进展路径。为此,我们利用长短期记忆(LSTM)网络从每位患者的连续记录中提取相关信息。然后将分层聚类应用于所学的表示,根据患者的进展亚型对其进行分组。我们的方法确定了多条疾病进展路径,每条路径都代表了从 MCI 到 AD 的不同疾病进展模式。这些路径可作为研究人员的宝贵资源,帮助他们了解影响注意力缺失症进展的因素,并开发个性化干预措施来延缓或预防疾病的发生。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Identification of Outcome-Oriented Progression Subtypes from Mild Cognitive Impairment to Alzheimer's Disease Using Electronic Health Records.

Alzheimer's disease (AD) is a complex heterogeneous neurodegenerative disease that requires an in-depth understanding of its progression pathways and contributing factors to develop effective risk stratification and prevention strategies. In this study, we proposed an outcome-oriented model to identify progression pathways from mild cognitive impairment (MCI) to AD using electronic health records (EHRs) from the OneFlorida+ Clinical Research Consortium. To achieve this, we employed the long short-term memory (LSTM) network to extract relevant information from the sequential records of each patient. The hierarchical agglomerative clustering was then applied to the learned representation to group patients based on their progression subtypes. Our approach identified multiple progression pathways, each of which represented distinct patterns of disease progression from MCI to AD. These pathways can serve as a valuable resource for researchers to understand the factors influencing AD progression and to develop personalized interventions to delay or prevent the onset of the disease.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ethicara for Responsible AI in Healthcare: A System for Bias Detection and AI Risk Management. Towards Fair Patient-Trial Matching via Patient-Criterion Level Fairness Constraint. Towards Understanding the Generalization of Medical Text-to-SQL Models and Datasets. Transferable and Interpretable Treatment Effectiveness Prediction for Ovarian Cancer via Multimodal Deep Learning. Understanding Cancer Caregiving and Predicting Burden: An Analytics and Machine Learning Approach.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1