将多站点临床笔记标题标准化为 LOINC 文档本体:基于转换器的方法

AMIA ... Annual Symposium proceedings. AMIA Symposium Pub Date : 2024-01-11 eCollection Date: 2023-01-01
Xu Zuo, Yujia Zhou, Jon Duke, George Hripcsak, Nigam Shah, Juan M Banda, Ruth Reeves, Timothy Miller, Lemuel R Waitman, Karthik Natarajan, Hua Xu
{"title":"将多站点临床笔记标题标准化为 LOINC 文档本体:基于转换器的方法","authors":"Xu Zuo, Yujia Zhou, Jon Duke, George Hripcsak, Nigam Shah, Juan M Banda, Ruth Reeves, Timothy Miller, Lemuel R Waitman, Karthik Natarajan, Hua Xu","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The types of clinical notes in electronic health records (EHRs) are diverse and it would be great to standardize them to ensure unified data retrieval, exchange, and integration. The LOINC Document Ontology (DO) is a subset of LOINC that is created specifically for naming and describing clinical documents. Despite the efforts of promoting and improving this ontology, how to efficiently deploy it in real-world clinical settings has yet to be explored. In this study we evaluated the utility of LOINC DO by mapping clinical note titles collected from five institutions to the LOINC DO and classifying the mapping into three classes based on semantic similarity between note t<i>itl</i>es and LOINC DO codes. Additionally, we developed a standardization pipeline that automatically maps clinical note titles from multiple sites to suitable LOINC DO codes, without accessing the content of clinical notes. The pipeline can be initialized with different large language models, and we compared the performances between them. The results showed that our automated pipeline achieved an accuracy of 0.90. By comparing the manual and automated mapping results, we analyzed the coverage of LOINC DO in describing multi-site clinical note titles and summarized the potential scope for extension.</p>","PeriodicalId":72180,"journal":{"name":"AMIA ... Annual Symposium proceedings. AMIA Symposium","volume":"2023 ","pages":"834-843"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10785935/pdf/","citationCount":"0","resultStr":"{\"title\":\"Standardizing Multi-site Clinical Note Titles to LOINC Document Ontology: A Transformer-based Approach.\",\"authors\":\"Xu Zuo, Yujia Zhou, Jon Duke, George Hripcsak, Nigam Shah, Juan M Banda, Ruth Reeves, Timothy Miller, Lemuel R Waitman, Karthik Natarajan, Hua Xu\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The types of clinical notes in electronic health records (EHRs) are diverse and it would be great to standardize them to ensure unified data retrieval, exchange, and integration. The LOINC Document Ontology (DO) is a subset of LOINC that is created specifically for naming and describing clinical documents. Despite the efforts of promoting and improving this ontology, how to efficiently deploy it in real-world clinical settings has yet to be explored. In this study we evaluated the utility of LOINC DO by mapping clinical note titles collected from five institutions to the LOINC DO and classifying the mapping into three classes based on semantic similarity between note t<i>itl</i>es and LOINC DO codes. Additionally, we developed a standardization pipeline that automatically maps clinical note titles from multiple sites to suitable LOINC DO codes, without accessing the content of clinical notes. The pipeline can be initialized with different large language models, and we compared the performances between them. The results showed that our automated pipeline achieved an accuracy of 0.90. By comparing the manual and automated mapping results, we analyzed the coverage of LOINC DO in describing multi-site clinical note titles and summarized the potential scope for extension.</p>\",\"PeriodicalId\":72180,\"journal\":{\"name\":\"AMIA ... Annual Symposium proceedings. AMIA Symposium\",\"volume\":\"2023 \",\"pages\":\"834-843\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10785935/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AMIA ... Annual Symposium proceedings. AMIA Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMIA ... Annual Symposium proceedings. AMIA Symposium","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

电子健康记录(EHR)中的临床笔记类型多种多样,如果能将它们标准化,以确保统一的数据检索、交换和整合,那将是一件非常好的事情。LOINC 文档本体(DO)是 LOINC 的一个子集,专门用于命名和描述临床文档。尽管人们一直在努力推广和改进这一本体,但如何在现实世界的临床环境中有效地部署这一本体仍有待探索。在这项研究中,我们将从五家机构收集到的临床病历标题与 LOINC DO 进行了映射,并根据病历标题与 LOINC DO 代码之间的语义相似性将映射分为三类,从而评估了 LOINC DO 的实用性。此外,我们还开发了一个标准化流水线,可将多个机构的临床病历标题自动映射为合适的 LOINC DO 代码,而无需访问临床病历的内容。该管道可使用不同的大型语言模型进行初始化,我们还比较了它们之间的性能。结果显示,我们的自动管道准确率达到了 0.90。通过比较手动和自动映射结果,我们分析了 LOINC DO 在描述多站点临床笔记标题方面的覆盖范围,并总结了潜在的扩展范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Standardizing Multi-site Clinical Note Titles to LOINC Document Ontology: A Transformer-based Approach.

The types of clinical notes in electronic health records (EHRs) are diverse and it would be great to standardize them to ensure unified data retrieval, exchange, and integration. The LOINC Document Ontology (DO) is a subset of LOINC that is created specifically for naming and describing clinical documents. Despite the efforts of promoting and improving this ontology, how to efficiently deploy it in real-world clinical settings has yet to be explored. In this study we evaluated the utility of LOINC DO by mapping clinical note titles collected from five institutions to the LOINC DO and classifying the mapping into three classes based on semantic similarity between note titles and LOINC DO codes. Additionally, we developed a standardization pipeline that automatically maps clinical note titles from multiple sites to suitable LOINC DO codes, without accessing the content of clinical notes. The pipeline can be initialized with different large language models, and we compared the performances between them. The results showed that our automated pipeline achieved an accuracy of 0.90. By comparing the manual and automated mapping results, we analyzed the coverage of LOINC DO in describing multi-site clinical note titles and summarized the potential scope for extension.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ethicara for Responsible AI in Healthcare: A System for Bias Detection and AI Risk Management. Towards Fair Patient-Trial Matching via Patient-Criterion Level Fairness Constraint. Towards Understanding the Generalization of Medical Text-to-SQL Models and Datasets. Transferable and Interpretable Treatment Effectiveness Prediction for Ovarian Cancer via Multimodal Deep Learning. Understanding Cancer Caregiving and Predicting Burden: An Analytics and Machine Learning Approach.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1