从真实世界数据中对胃肠道手术结果进行细分:英国生物库综合分析。

AMIA ... Annual Symposium proceedings. AMIA Symposium Pub Date : 2024-01-11 eCollection Date: 2023-01-01
Uri Kartoun, Kingsley Njoku, Tesfaye Yadete, Sivan Ravid, Eileen Koski, William Ogallo, Joao Bettencourt-Silva, Natasha Mulligan, Jianying Hu, Julia Liu, Thaddeus Stappenbeck, Vibha Anand
{"title":"从真实世界数据中对胃肠道手术结果进行细分:英国生物库综合分析。","authors":"Uri Kartoun, Kingsley Njoku, Tesfaye Yadete, Sivan Ravid, Eileen Koski, William Ogallo, Joao Bettencourt-Silva, Natasha Mulligan, Jianying Hu, Julia Liu, Thaddeus Stappenbeck, Vibha Anand","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Chronic gastrointestinal (GI) conditions, such as inflammatory bowel diseases (IBD), offer a promising opportunity to create classification systems that can enhance the accuracy of predicting the most effective therapies and prognosis for each patient. Here, we present a novel methodology to explore disease subtypes using our open-sourced BiomedSciAI toolkit. Applying methods available in this toolkit on the UK Biobank, including subpopulation-based feature selection and multi-dimensional subset scanning, we aimed to discover unique subgroups from GI surgery cohorts. Of a 12,073-patient cohort, a subgroup of 440 IBD patients was discovered with an increased risk of a subsequent GI surgery (OR: 2.21, 95% CI [1.81-2.69]). We iteratively demonstrate the discovery process using an additional cohort (with a narrower definition of GI surgery). Our results show that the iterative process can refine the subgroup discovery process and generate novel hypotheses to investigate determinants of treatment response.</p>","PeriodicalId":72180,"journal":{"name":"AMIA ... Annual Symposium proceedings. AMIA Symposium","volume":"2023 ","pages":"426-435"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10785930/pdf/","citationCount":"0","resultStr":"{\"title\":\"Subtyping Gastrointestinal Surgical Outcomes from Real World Data: A Comprehensive Analysis of UK Biobank.\",\"authors\":\"Uri Kartoun, Kingsley Njoku, Tesfaye Yadete, Sivan Ravid, Eileen Koski, William Ogallo, Joao Bettencourt-Silva, Natasha Mulligan, Jianying Hu, Julia Liu, Thaddeus Stappenbeck, Vibha Anand\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Chronic gastrointestinal (GI) conditions, such as inflammatory bowel diseases (IBD), offer a promising opportunity to create classification systems that can enhance the accuracy of predicting the most effective therapies and prognosis for each patient. Here, we present a novel methodology to explore disease subtypes using our open-sourced BiomedSciAI toolkit. Applying methods available in this toolkit on the UK Biobank, including subpopulation-based feature selection and multi-dimensional subset scanning, we aimed to discover unique subgroups from GI surgery cohorts. Of a 12,073-patient cohort, a subgroup of 440 IBD patients was discovered with an increased risk of a subsequent GI surgery (OR: 2.21, 95% CI [1.81-2.69]). We iteratively demonstrate the discovery process using an additional cohort (with a narrower definition of GI surgery). Our results show that the iterative process can refine the subgroup discovery process and generate novel hypotheses to investigate determinants of treatment response.</p>\",\"PeriodicalId\":72180,\"journal\":{\"name\":\"AMIA ... Annual Symposium proceedings. AMIA Symposium\",\"volume\":\"2023 \",\"pages\":\"426-435\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10785930/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AMIA ... Annual Symposium proceedings. AMIA Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMIA ... Annual Symposium proceedings. AMIA Symposium","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

慢性胃肠道(GI)疾病,如炎症性肠病(IBD),为创建分类系统提供了一个大有可为的机会,该系统可以提高预测每位患者最有效疗法和预后的准确性。在此,我们介绍一种利用开源 BiomedSciAI 工具包探索疾病亚型的新方法。我们在英国生物库中应用了该工具包中的方法,包括基于亚群的特征选择和多维子集扫描,旨在从消化道手术队列中发现独特的亚群。在一个由 12073 名患者组成的队列中,我们发现了一个由 440 名 IBD 患者组成的亚群,该亚群的后续消化道手术风险较高(OR:2.21,95% CI [1.81-2.69])。我们使用另一个队列(对消化道手术的定义更窄)反复演示了这一发现过程。我们的结果表明,迭代过程可以完善亚组发现过程,并产生新的假设来研究治疗反应的决定因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Subtyping Gastrointestinal Surgical Outcomes from Real World Data: A Comprehensive Analysis of UK Biobank.

Chronic gastrointestinal (GI) conditions, such as inflammatory bowel diseases (IBD), offer a promising opportunity to create classification systems that can enhance the accuracy of predicting the most effective therapies and prognosis for each patient. Here, we present a novel methodology to explore disease subtypes using our open-sourced BiomedSciAI toolkit. Applying methods available in this toolkit on the UK Biobank, including subpopulation-based feature selection and multi-dimensional subset scanning, we aimed to discover unique subgroups from GI surgery cohorts. Of a 12,073-patient cohort, a subgroup of 440 IBD patients was discovered with an increased risk of a subsequent GI surgery (OR: 2.21, 95% CI [1.81-2.69]). We iteratively demonstrate the discovery process using an additional cohort (with a narrower definition of GI surgery). Our results show that the iterative process can refine the subgroup discovery process and generate novel hypotheses to investigate determinants of treatment response.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ethicara for Responsible AI in Healthcare: A System for Bias Detection and AI Risk Management. Towards Fair Patient-Trial Matching via Patient-Criterion Level Fairness Constraint. Towards Understanding the Generalization of Medical Text-to-SQL Models and Datasets. Transferable and Interpretable Treatment Effectiveness Prediction for Ovarian Cancer via Multimodal Deep Learning. Understanding Cancer Caregiving and Predicting Burden: An Analytics and Machine Learning Approach.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1