Hongzhi Wang, Amirhossein Sarrami, Joy Tzung-Yu Wu, Lucia Baratto, Arjun Sharma, Ken C L Wong, Shashi Bhushan Singh, Heike E Daldrup-Link, Tanveer Syeda-Mahmood
{"title":"利用正电子发射计算机断层显像和核磁共振成像进行小儿淋巴瘤多模态检测","authors":"Hongzhi Wang, Amirhossein Sarrami, Joy Tzung-Yu Wu, Lucia Baratto, Arjun Sharma, Ken C L Wong, Shashi Bhushan Singh, Heike E Daldrup-Link, Tanveer Syeda-Mahmood","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Lymphoma is one of the most common types of cancer for children (ages 0 to 19). Due to the reduced radiation exposure, PET/MR systems that allow simultaneous PET and MR imaging have become the standard of care for diagnosing cancers and monitoring tumor response to therapy in the pediatric population. In this work, we developed a multimodal deep learning algorithm for automatic pediatric lymphoma detection using PET and MRI. Through innovative designs such as standardized uptake value (SUV) guided tumor candidate generation, location aware classification model learning and weighted multimodal feature fusion, our algorithm can be effectively trained with limited data and achieved superior tumor detection performance over the state-of-the-art in our experiments.</p>","PeriodicalId":72180,"journal":{"name":"AMIA ... Annual Symposium proceedings. AMIA Symposium","volume":"2023 ","pages":"736-743"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10785920/pdf/","citationCount":"0","resultStr":"{\"title\":\"Multimodal Pediatric Lymphoma Detection using PET and MRI.\",\"authors\":\"Hongzhi Wang, Amirhossein Sarrami, Joy Tzung-Yu Wu, Lucia Baratto, Arjun Sharma, Ken C L Wong, Shashi Bhushan Singh, Heike E Daldrup-Link, Tanveer Syeda-Mahmood\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Lymphoma is one of the most common types of cancer for children (ages 0 to 19). Due to the reduced radiation exposure, PET/MR systems that allow simultaneous PET and MR imaging have become the standard of care for diagnosing cancers and monitoring tumor response to therapy in the pediatric population. In this work, we developed a multimodal deep learning algorithm for automatic pediatric lymphoma detection using PET and MRI. Through innovative designs such as standardized uptake value (SUV) guided tumor candidate generation, location aware classification model learning and weighted multimodal feature fusion, our algorithm can be effectively trained with limited data and achieved superior tumor detection performance over the state-of-the-art in our experiments.</p>\",\"PeriodicalId\":72180,\"journal\":{\"name\":\"AMIA ... Annual Symposium proceedings. AMIA Symposium\",\"volume\":\"2023 \",\"pages\":\"736-743\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10785920/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AMIA ... Annual Symposium proceedings. AMIA Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMIA ... Annual Symposium proceedings. AMIA Symposium","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
淋巴瘤是儿童(0 至 19 岁)最常见的癌症类型之一。由于减少了辐射暴露,可同时进行 PET 和 MR 成像的 PET/MR 系统已成为诊断癌症和监测肿瘤对儿科治疗反应的标准。在这项工作中,我们开发了一种利用 PET 和 MRI 自动检测儿科淋巴瘤的多模态深度学习算法。通过标准化摄取值(SUV)引导的候选肿瘤生成、位置感知分类模型学习和加权多模态特征融合等创新设计,我们的算法可以用有限的数据进行有效训练,并在实验中取得了优于最先进水平的肿瘤检测性能。
Multimodal Pediatric Lymphoma Detection using PET and MRI.
Lymphoma is one of the most common types of cancer for children (ages 0 to 19). Due to the reduced radiation exposure, PET/MR systems that allow simultaneous PET and MR imaging have become the standard of care for diagnosing cancers and monitoring tumor response to therapy in the pediatric population. In this work, we developed a multimodal deep learning algorithm for automatic pediatric lymphoma detection using PET and MRI. Through innovative designs such as standardized uptake value (SUV) guided tumor candidate generation, location aware classification model learning and weighted multimodal feature fusion, our algorithm can be effectively trained with limited data and achieved superior tumor detection performance over the state-of-the-art in our experiments.