在健康和炎症组织中识别空间共现(ISCHIA)。

IF 8.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Molecular Systems Biology Pub Date : 2024-02-01 Epub Date: 2024-01-15 DOI:10.1038/s44320-023-00006-5
Atefeh Lafzi, Costanza Borrelli, Simona Baghai Sain, Karsten Bach, Jonas A Kretz, Kristina Handler, Daniel Regan-Komito, Xenia Ficht, Andreas Frei, Andreas Moor
{"title":"在健康和炎症组织中识别空间共现(ISCHIA)。","authors":"Atefeh Lafzi, Costanza Borrelli, Simona Baghai Sain, Karsten Bach, Jonas A Kretz, Kristina Handler, Daniel Regan-Komito, Xenia Ficht, Andreas Frei, Andreas Moor","doi":"10.1038/s44320-023-00006-5","DOIUrl":null,"url":null,"abstract":"<p><p>Sequencing-based spatial transcriptomics (ST) methods allow unbiased capturing of RNA molecules at barcoded spots, charting the distribution and localization of cell types and transcripts across a tissue. While the coarse resolution of these techniques is considered a disadvantage, we argue that the inherent proximity of transcriptomes captured on spots can be leveraged to reconstruct cellular networks. To this end, we developed ISCHIA (Identifying Spatial Co-occurrence in Healthy and InflAmed tissues), a computational framework to analyze the spatial co-occurrence of cell types and transcript species within spots. Co-occurrence analysis is complementary to differential gene expression, as it does not depend on the abundance of a given cell type or on the transcript expression levels, but rather on their spatial association in the tissue. We applied ISCHIA to analyze co-occurrence of cell types, ligands and receptors in a Visium dataset of human ulcerative colitis patients, and validated our findings at single-cell resolution on matched hybridization-based data. We uncover inflammation-induced cellular networks involving M cell and fibroblasts, as well as ligand-receptor interactions enriched in the inflamed human colon, and their associated gene signatures. Our results highlight the hypothesis-generating power and broad applicability of co-occurrence analysis on spatial transcriptomics data.</p>","PeriodicalId":18906,"journal":{"name":"Molecular Systems Biology","volume":" ","pages":"98-119"},"PeriodicalIF":8.5000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10897385/pdf/","citationCount":"0","resultStr":"{\"title\":\"Identifying Spatial Co-occurrence in Healthy and InflAmed tissues (ISCHIA).\",\"authors\":\"Atefeh Lafzi, Costanza Borrelli, Simona Baghai Sain, Karsten Bach, Jonas A Kretz, Kristina Handler, Daniel Regan-Komito, Xenia Ficht, Andreas Frei, Andreas Moor\",\"doi\":\"10.1038/s44320-023-00006-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Sequencing-based spatial transcriptomics (ST) methods allow unbiased capturing of RNA molecules at barcoded spots, charting the distribution and localization of cell types and transcripts across a tissue. While the coarse resolution of these techniques is considered a disadvantage, we argue that the inherent proximity of transcriptomes captured on spots can be leveraged to reconstruct cellular networks. To this end, we developed ISCHIA (Identifying Spatial Co-occurrence in Healthy and InflAmed tissues), a computational framework to analyze the spatial co-occurrence of cell types and transcript species within spots. Co-occurrence analysis is complementary to differential gene expression, as it does not depend on the abundance of a given cell type or on the transcript expression levels, but rather on their spatial association in the tissue. We applied ISCHIA to analyze co-occurrence of cell types, ligands and receptors in a Visium dataset of human ulcerative colitis patients, and validated our findings at single-cell resolution on matched hybridization-based data. We uncover inflammation-induced cellular networks involving M cell and fibroblasts, as well as ligand-receptor interactions enriched in the inflamed human colon, and their associated gene signatures. Our results highlight the hypothesis-generating power and broad applicability of co-occurrence analysis on spatial transcriptomics data.</p>\",\"PeriodicalId\":18906,\"journal\":{\"name\":\"Molecular Systems Biology\",\"volume\":\" \",\"pages\":\"98-119\"},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10897385/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Systems Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s44320-023-00006-5\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Systems Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s44320-023-00006-5","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/15 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

基于测序的空间转录组学(ST)方法可以在条形码点上无偏见地捕获 RNA 分子,描绘出细胞类型和转录本在组织中的分布和定位。虽然这些技术的分辨率较低被认为是一个缺点,但我们认为,可以利用捕获点上转录组固有的接近性来重建细胞网络。为此,我们开发了 ISCHIA(在健康和炎症组织中识别空间共现),这是一种分析斑点内细胞类型和转录本物种空间共现的计算框架。共现分析是对差异基因表达的补充,因为它并不取决于特定细胞类型的丰度或转录本的表达水平,而是取决于它们在组织中的空间关联。我们应用 ISCHIA 分析了人类溃疡性结肠炎患者 Visium 数据集中细胞类型、配体和受体的共现,并在基于匹配杂交数据的单细胞分辨率上验证了我们的发现。我们发现了炎症诱导的细胞网络,其中涉及 M 细胞和成纤维细胞,以及富集在炎症人类结肠中的配体-受体相互作用及其相关基因特征。我们的研究结果凸显了空间转录组学数据共现分析的假设生成能力和广泛适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Identifying Spatial Co-occurrence in Healthy and InflAmed tissues (ISCHIA).

Sequencing-based spatial transcriptomics (ST) methods allow unbiased capturing of RNA molecules at barcoded spots, charting the distribution and localization of cell types and transcripts across a tissue. While the coarse resolution of these techniques is considered a disadvantage, we argue that the inherent proximity of transcriptomes captured on spots can be leveraged to reconstruct cellular networks. To this end, we developed ISCHIA (Identifying Spatial Co-occurrence in Healthy and InflAmed tissues), a computational framework to analyze the spatial co-occurrence of cell types and transcript species within spots. Co-occurrence analysis is complementary to differential gene expression, as it does not depend on the abundance of a given cell type or on the transcript expression levels, but rather on their spatial association in the tissue. We applied ISCHIA to analyze co-occurrence of cell types, ligands and receptors in a Visium dataset of human ulcerative colitis patients, and validated our findings at single-cell resolution on matched hybridization-based data. We uncover inflammation-induced cellular networks involving M cell and fibroblasts, as well as ligand-receptor interactions enriched in the inflamed human colon, and their associated gene signatures. Our results highlight the hypothesis-generating power and broad applicability of co-occurrence analysis on spatial transcriptomics data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Systems Biology
Molecular Systems Biology 生物-生化与分子生物学
CiteScore
18.50
自引率
1.00%
发文量
62
审稿时长
6-12 weeks
期刊介绍: Systems biology is a field that aims to understand complex biological systems by studying their components and how they interact. It is an integrative discipline that seeks to explain the properties and behavior of these systems. Molecular Systems Biology is a scholarly journal that publishes top-notch research in the areas of systems biology, synthetic biology, and systems medicine. It is an open access journal, meaning that its content is freely available to readers, and it is peer-reviewed to ensure the quality of the published work.
期刊最新文献
Enhancers and genome conformation provide complex transcriptional control of a herpesviral gene. Global atlas of predicted functional domains in Legionella pneumophila Dot/Icm translocated effectors. Subcellular mRNA kinetic modeling reveals nuclear retention as rate-limiting. Identifying T-cell clubs by embracing the local harmony between TCR and gene expressions. XCMS-METLIN: data-driven metabolite, lipid, and chemical analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1