用于检测和降解水中有机污染物的机器学习辅助双功能纳米光子传感器

IF 10.4 1区 工程技术 Q1 ENGINEERING, CHEMICAL npj Clean Water Pub Date : 2024-01-16 DOI:10.1038/s41545-023-00292-4
Junhu Zhou, Ziqian Wu, Congran Jin, John X. J. Zhang
{"title":"用于检测和降解水中有机污染物的机器学习辅助双功能纳米光子传感器","authors":"Junhu Zhou, Ziqian Wu, Congran Jin, John X. J. Zhang","doi":"10.1038/s41545-023-00292-4","DOIUrl":null,"url":null,"abstract":"This study presents a dual-functional thin film, known as Ag nanoparticles decorated, ZnO nanorods coated silica nanofibers (AgNP-ZnONR-SNF), which demonstrates remarkable capabilities in both water purification and organic pollutants sensing. The 3D fibrous structure of ZnONR-SNF provides a large surface-area-to-volume ratio for piezo- and photo-catalytic degradation of organic pollutants under UV irradiation, achieving over 98% efficiency. Ag nanoparticles decorated on ZnONR-SNF form “hot-spot” that significantly enhance the surface-enhanced Raman spectroscopy (SERS) signal, resulting in an enhancement factor of 1056 and an experimental detection limit of 1 pg mL−1. Furthermore, a machine learning algorithm is developed for the qualitative and quantitative detection of multiple contaminants, achieving high accuracy (92.3%) and specificity (89.3%) without the need for preliminary processing of Raman spectra. This work provides a promising nanoengineering solution for water purification and sensing with improved detection accuracy, purification efficiency, and cost-effectiveness.","PeriodicalId":19375,"journal":{"name":"npj Clean Water","volume":null,"pages":null},"PeriodicalIF":10.4000,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41545-023-00292-4.pdf","citationCount":"0","resultStr":"{\"title\":\"Machine learning assisted dual-functional nanophotonic sensor for organic pollutant detection and degradation in water\",\"authors\":\"Junhu Zhou, Ziqian Wu, Congran Jin, John X. J. Zhang\",\"doi\":\"10.1038/s41545-023-00292-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study presents a dual-functional thin film, known as Ag nanoparticles decorated, ZnO nanorods coated silica nanofibers (AgNP-ZnONR-SNF), which demonstrates remarkable capabilities in both water purification and organic pollutants sensing. The 3D fibrous structure of ZnONR-SNF provides a large surface-area-to-volume ratio for piezo- and photo-catalytic degradation of organic pollutants under UV irradiation, achieving over 98% efficiency. Ag nanoparticles decorated on ZnONR-SNF form “hot-spot” that significantly enhance the surface-enhanced Raman spectroscopy (SERS) signal, resulting in an enhancement factor of 1056 and an experimental detection limit of 1 pg mL−1. Furthermore, a machine learning algorithm is developed for the qualitative and quantitative detection of multiple contaminants, achieving high accuracy (92.3%) and specificity (89.3%) without the need for preliminary processing of Raman spectra. This work provides a promising nanoengineering solution for water purification and sensing with improved detection accuracy, purification efficiency, and cost-effectiveness.\",\"PeriodicalId\":19375,\"journal\":{\"name\":\"npj Clean Water\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":10.4000,\"publicationDate\":\"2024-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41545-023-00292-4.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Clean Water\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.nature.com/articles/s41545-023-00292-4\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Clean Water","FirstCategoryId":"5","ListUrlMain":"https://www.nature.com/articles/s41545-023-00292-4","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种被称为 "Ag 纳米粒子装饰、ZnO 纳米棒包覆二氧化硅纳米纤维(AgNP-ZnONR-SNF)"的双功能薄膜,它在水净化和有机污染物传感方面都表现出卓越的性能。ZnONR-SNF 的三维纤维结构具有较大的表面积-体积比,可在紫外线照射下压电和光催化降解有机污染物,效率高达 98% 以上。装饰在 ZnONR-SNF 上的银纳米粒子形成 "热点",显著增强了表面增强拉曼光谱(SERS)信号,使增强因子达到 1056,实验检测限达到 1 pg mL-1。此外,还开发了一种机器学习算法,用于多种污染物的定性和定量检测,无需对拉曼光谱进行初步处理,即可实现较高的准确性(92.3%)和特异性(89.3%)。这项工作为水净化和传感提供了一种前景广阔的纳米工程解决方案,提高了检测精度、净化效率和成本效益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Machine learning assisted dual-functional nanophotonic sensor for organic pollutant detection and degradation in water
This study presents a dual-functional thin film, known as Ag nanoparticles decorated, ZnO nanorods coated silica nanofibers (AgNP-ZnONR-SNF), which demonstrates remarkable capabilities in both water purification and organic pollutants sensing. The 3D fibrous structure of ZnONR-SNF provides a large surface-area-to-volume ratio for piezo- and photo-catalytic degradation of organic pollutants under UV irradiation, achieving over 98% efficiency. Ag nanoparticles decorated on ZnONR-SNF form “hot-spot” that significantly enhance the surface-enhanced Raman spectroscopy (SERS) signal, resulting in an enhancement factor of 1056 and an experimental detection limit of 1 pg mL−1. Furthermore, a machine learning algorithm is developed for the qualitative and quantitative detection of multiple contaminants, achieving high accuracy (92.3%) and specificity (89.3%) without the need for preliminary processing of Raman spectra. This work provides a promising nanoengineering solution for water purification and sensing with improved detection accuracy, purification efficiency, and cost-effectiveness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
npj Clean Water
npj Clean Water Environmental Science-Water Science and Technology
CiteScore
15.30
自引率
2.60%
发文量
61
审稿时长
5 weeks
期刊介绍: npj Clean Water publishes high-quality papers that report cutting-edge science, technology, applications, policies, and societal issues contributing to a more sustainable supply of clean water. The journal's publications may also support and accelerate the achievement of Sustainable Development Goal 6, which focuses on clean water and sanitation.
期刊最新文献
Bacterial cellulose-graphene oxide composite membranes with enhanced fouling resistance for bio-effluents management Training caretakers to clean community wells is a highly cost-effective way to reduce exposure to coliform bacteria Uncovering pathway and mechanism of simultaneous thiocyanate detoxicity and nitrate removal through anammox and denitrification Author Correction: The enhancement of anammox by graphene-based and iron-based nanomaterials in performance and mechanisms Assessing the influence of environmental variables on energy efficiency changes in the provision of drinking water services
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1