快速、自牺牲模板合成二维高熵氧化物,实现高性能氧气进化

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Journal of Materials Chemistry A Pub Date : 2024-01-16 DOI:10.1039/D3TA06679G
Xiaofeng Tian, Hongdong Li, Rui Chang, Yu Yang, Zhenhui Wang, Tian Dong, Jianping Lai, Shouhua Feng and Lei Wang
{"title":"快速、自牺牲模板合成二维高熵氧化物,实现高性能氧气进化","authors":"Xiaofeng Tian, Hongdong Li, Rui Chang, Yu Yang, Zhenhui Wang, Tian Dong, Jianping Lai, Shouhua Feng and Lei Wang","doi":"10.1039/D3TA06679G","DOIUrl":null,"url":null,"abstract":"<p >The design of high-entropy oxides (HEOs) with specific morphologies and tunable compositions is of great significance for the development of efficient electrocatalysts for the oxygen evolution reaction (OER). Herein, a series of two-dimensional HEOs with abundant active sites are prepared by a self-sacrificing template method <em>via</em> rapid Joule heating. Among them, high-entropy oxide (FeCoNiMoRu)<small><sub>3</sub></small>O<small><sub>4</sub></small> exhibits outstanding OER performance with low overpotential (199 mV@10 mA cm<small><sup>—2</sup></small>, 266 mV@100 mA cm<small><sup>—2</sup></small>), small Tafel slope (40 mV dec<small><sup>—1</sup></small>), and excellent long-term stability (operating at 500 mA cm<small><sup>—2</sup></small> for 100 hours without significant decay). The perfect performance of (FeCoNiMoRu)<small><sub>3</sub></small>O<small><sub>4</sub></small> can be attributed to the large active surface area generated by the nanosheet structure, shortened ion transport pathway, entropy stabilization mechanism and multi-element synergism. Therefore, the two-dimensional high-entropy oxide prepared by using a carbon sacrificial template is expected to be a promising candidate material for industrial water splitting.</p>","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":" 6","pages":" 3276-3282"},"PeriodicalIF":10.7000,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rapid, self-sacrificing template synthesis of two dimensional high-entropy oxides toward high-performance oxygen evolution†\",\"authors\":\"Xiaofeng Tian, Hongdong Li, Rui Chang, Yu Yang, Zhenhui Wang, Tian Dong, Jianping Lai, Shouhua Feng and Lei Wang\",\"doi\":\"10.1039/D3TA06679G\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The design of high-entropy oxides (HEOs) with specific morphologies and tunable compositions is of great significance for the development of efficient electrocatalysts for the oxygen evolution reaction (OER). Herein, a series of two-dimensional HEOs with abundant active sites are prepared by a self-sacrificing template method <em>via</em> rapid Joule heating. Among them, high-entropy oxide (FeCoNiMoRu)<small><sub>3</sub></small>O<small><sub>4</sub></small> exhibits outstanding OER performance with low overpotential (199 mV@10 mA cm<small><sup>—2</sup></small>, 266 mV@100 mA cm<small><sup>—2</sup></small>), small Tafel slope (40 mV dec<small><sup>—1</sup></small>), and excellent long-term stability (operating at 500 mA cm<small><sup>—2</sup></small> for 100 hours without significant decay). The perfect performance of (FeCoNiMoRu)<small><sub>3</sub></small>O<small><sub>4</sub></small> can be attributed to the large active surface area generated by the nanosheet structure, shortened ion transport pathway, entropy stabilization mechanism and multi-element synergism. Therefore, the two-dimensional high-entropy oxide prepared by using a carbon sacrificial template is expected to be a promising candidate material for industrial water splitting.</p>\",\"PeriodicalId\":82,\"journal\":{\"name\":\"Journal of Materials Chemistry A\",\"volume\":\" 6\",\"pages\":\" 3276-3282\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2024-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry A\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/ta/d3ta06679g\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ta/d3ta06679g","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

设计具有特定形态和可调成分的高熵氧化物(HEO)对于开发高效的氧进化反应(OER)电催化剂具有重要意义。本文采用焦耳快速加热的自牺牲模板法制备了一系列具有丰富活性位点的二维高熵氧化物。其中,高熵氧化物(FeCoNiMoRu)3O4 具有优异的 OER 性能,过电位低(199 mV@10 mA cm-2,266 mV@100 mA cm-2),塔菲尔斜率小(40 mV dec-1),长期稳定性好(在 500 mA cm-2 下工作 100 小时无明显衰减)。(FeCoNiMoRu)3O4的完美性能可归因于纳米片结构产生的大活性表面积、缩短的离子传输路径、熵稳定机制和多元素协同作用。因此,利用碳牺牲模板制备的二维高熵氧化物有望成为工业水分离的候选材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Rapid, self-sacrificing template synthesis of two dimensional high-entropy oxides toward high-performance oxygen evolution†

The design of high-entropy oxides (HEOs) with specific morphologies and tunable compositions is of great significance for the development of efficient electrocatalysts for the oxygen evolution reaction (OER). Herein, a series of two-dimensional HEOs with abundant active sites are prepared by a self-sacrificing template method via rapid Joule heating. Among them, high-entropy oxide (FeCoNiMoRu)3O4 exhibits outstanding OER performance with low overpotential (199 mV@10 mA cm—2, 266 mV@100 mA cm—2), small Tafel slope (40 mV dec—1), and excellent long-term stability (operating at 500 mA cm—2 for 100 hours without significant decay). The perfect performance of (FeCoNiMoRu)3O4 can be attributed to the large active surface area generated by the nanosheet structure, shortened ion transport pathway, entropy stabilization mechanism and multi-element synergism. Therefore, the two-dimensional high-entropy oxide prepared by using a carbon sacrificial template is expected to be a promising candidate material for industrial water splitting.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Chemistry A
Journal of Materials Chemistry A CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
19.50
自引率
5.00%
发文量
1892
审稿时长
1.5 months
期刊介绍: The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.
期刊最新文献
Proanthocyanidin-Enhanced Wettability and Adhesion in Liquid Metal Inks for Multi-Substrate Patterning in Soft Electronics Scalable and environmentally friendly MXene-tetrahedrites for next-generation flexible thermoelectrics Rapid One-pot Microwave-assisted Synthesis and Defect Engineering of UiO-66 for Enhanced CO2 Capture Functionalities of the LiV3-xNbxO8 surface layer on a Li2NiO2 cathode additive for enhancing the moisture stability and cycling performance of lithium-ion batteries Ultrathin Oxygen Deficient SnOx Films as Electron Extraction Layers for Perovskite Solar Modules
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1