{"title":"含有空隙的涂覆弹性半空间中的雷电波近似世俗方程","authors":"Savkirat Kaur , Aarti Khurana , S.K. Tomar","doi":"10.1016/j.ijengsci.2023.104016","DOIUrl":null,"url":null,"abstract":"<div><p>Propagation of Rayleigh-like surface waves is studied in an isotropic elastic solid half-space coated with a thin isotropic elastic solid layer. The half-space and the thin coated layer are in welded contact with each other and contain a uniform distribution of small void pores. Effective boundary condition method is employed to derive an approximate secular equation of second-, third-, and fourth-orders in terms of dimensionless wavenumber. The corresponding secular equations are solved numerically to obtain the speed of propagating Rayleigh-like waves for a particular model. The computed results are presented graphically and compared with those obtained from exact secular equation. The fourth-order approximate secular equation is found to have high accuracy as it provides solutions that are in close vicinity of those obtained from the exact secular equation in the considered model. The presence of voids in the model is found to influence the speed of Rayleigh-like waves theoretically and verified numerically. By ignoring the presence of voids in the model, the secular equation is found to be in complete agreement to the earlier known results in the literature for the corresponding model.</p></div>","PeriodicalId":14053,"journal":{"name":"International Journal of Engineering Science","volume":"196 ","pages":"Article 104016"},"PeriodicalIF":5.7000,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An approximate secular equation of Rayleigh-like waves in coated elastic half-space containing voids\",\"authors\":\"Savkirat Kaur , Aarti Khurana , S.K. Tomar\",\"doi\":\"10.1016/j.ijengsci.2023.104016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Propagation of Rayleigh-like surface waves is studied in an isotropic elastic solid half-space coated with a thin isotropic elastic solid layer. The half-space and the thin coated layer are in welded contact with each other and contain a uniform distribution of small void pores. Effective boundary condition method is employed to derive an approximate secular equation of second-, third-, and fourth-orders in terms of dimensionless wavenumber. The corresponding secular equations are solved numerically to obtain the speed of propagating Rayleigh-like waves for a particular model. The computed results are presented graphically and compared with those obtained from exact secular equation. The fourth-order approximate secular equation is found to have high accuracy as it provides solutions that are in close vicinity of those obtained from the exact secular equation in the considered model. The presence of voids in the model is found to influence the speed of Rayleigh-like waves theoretically and verified numerically. By ignoring the presence of voids in the model, the secular equation is found to be in complete agreement to the earlier known results in the literature for the corresponding model.</p></div>\",\"PeriodicalId\":14053,\"journal\":{\"name\":\"International Journal of Engineering Science\",\"volume\":\"196 \",\"pages\":\"Article 104016\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Engineering Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0020722523002070\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engineering Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020722523002070","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
An approximate secular equation of Rayleigh-like waves in coated elastic half-space containing voids
Propagation of Rayleigh-like surface waves is studied in an isotropic elastic solid half-space coated with a thin isotropic elastic solid layer. The half-space and the thin coated layer are in welded contact with each other and contain a uniform distribution of small void pores. Effective boundary condition method is employed to derive an approximate secular equation of second-, third-, and fourth-orders in terms of dimensionless wavenumber. The corresponding secular equations are solved numerically to obtain the speed of propagating Rayleigh-like waves for a particular model. The computed results are presented graphically and compared with those obtained from exact secular equation. The fourth-order approximate secular equation is found to have high accuracy as it provides solutions that are in close vicinity of those obtained from the exact secular equation in the considered model. The presence of voids in the model is found to influence the speed of Rayleigh-like waves theoretically and verified numerically. By ignoring the presence of voids in the model, the secular equation is found to be in complete agreement to the earlier known results in the literature for the corresponding model.
期刊介绍:
The International Journal of Engineering Science is not limited to a specific aspect of science and engineering but is instead devoted to a wide range of subfields in the engineering sciences. While it encourages a broad spectrum of contribution in the engineering sciences, its core interest lies in issues concerning material modeling and response. Articles of interdisciplinary nature are particularly welcome.
The primary goal of the new editors is to maintain high quality of publications. There will be a commitment to expediting the time taken for the publication of the papers. The articles that are sent for reviews will have names of the authors deleted with a view towards enhancing the objectivity and fairness of the review process.
Articles that are devoted to the purely mathematical aspects without a discussion of the physical implications of the results or the consideration of specific examples are discouraged. Articles concerning material science should not be limited merely to a description and recording of observations but should contain theoretical or quantitative discussion of the results.