在 iAERUS-GEO 算法框架内对从地球静止气象卫星进行气溶胶检索的优化估计潜力进行定量评估

IF 2 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES Atmospheric Science Letters Pub Date : 2024-01-16 DOI:10.1002/asl.1199
Adèle Georgeot, Xavier Ceamanos, Jean-Luc Attié
{"title":"在 iAERUS-GEO 算法框架内对从地球静止气象卫星进行气溶胶检索的优化估计潜力进行定量评估","authors":"Adèle Georgeot,&nbsp;Xavier Ceamanos,&nbsp;Jean-Luc Attié","doi":"10.1002/asl.1199","DOIUrl":null,"url":null,"abstract":"<p>Satellite remote sensing enables the study of atmospheric aerosols at large spatial scales, with geostationary platforms making this possible at sub-daily frequencies. High-temporal-resolution aerosol observations can be made from geostationary data by using robust numerical inversion methods such as the widely-used optimal estimation (OE) theory. This is the case of the instantaneous Aerosol and surfacE Retrieval Using Satellites in GEOstationary orbit (iAERUS-GEO) algorithm, which successfully retrieves aerosol optical depth (AOD) maps from the Meteosat Second Generation weather satellite based on a simple implementation of the OE approach combined with the Levenberg–Marquardt method. However, the exact gain in inversion performances that can be obtained from the multiple and more advanced possibilities offered by OE is not well documented in the current literature. Against this background, this article presents the quantitative assessment of OE for the future improvement of the iAERUS-GEO algorithm. To this end, we use a series of comprehensive experiments based on AOD maps retrieved by iAERUS-GEO using different OE implementations, and ground-based observations used as reference data. First, we assess the varying importance in the inversion process of satellite observations and a priori information according to the content of satellite aerosol information. Second, we quantify the gain of AOD estimation in log space versus linear space in terms of accuracy, AOD distribution and number of successful retrievals. Finally, we evaluate the accuracy improvement of simultaneous AOD and surface reflectance retrieval as a function of the regions covered by the Meteosat Earth's disk.</p>","PeriodicalId":50734,"journal":{"name":"Atmospheric Science Letters","volume":"25 3","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/asl.1199","citationCount":"0","resultStr":"{\"title\":\"Quantitative assessment of the potential of optimal estimation for aerosol retrieval from geostationary weather satellites in the frame of the iAERUS-GEO algorithm\",\"authors\":\"Adèle Georgeot,&nbsp;Xavier Ceamanos,&nbsp;Jean-Luc Attié\",\"doi\":\"10.1002/asl.1199\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Satellite remote sensing enables the study of atmospheric aerosols at large spatial scales, with geostationary platforms making this possible at sub-daily frequencies. High-temporal-resolution aerosol observations can be made from geostationary data by using robust numerical inversion methods such as the widely-used optimal estimation (OE) theory. This is the case of the instantaneous Aerosol and surfacE Retrieval Using Satellites in GEOstationary orbit (iAERUS-GEO) algorithm, which successfully retrieves aerosol optical depth (AOD) maps from the Meteosat Second Generation weather satellite based on a simple implementation of the OE approach combined with the Levenberg–Marquardt method. However, the exact gain in inversion performances that can be obtained from the multiple and more advanced possibilities offered by OE is not well documented in the current literature. Against this background, this article presents the quantitative assessment of OE for the future improvement of the iAERUS-GEO algorithm. To this end, we use a series of comprehensive experiments based on AOD maps retrieved by iAERUS-GEO using different OE implementations, and ground-based observations used as reference data. First, we assess the varying importance in the inversion process of satellite observations and a priori information according to the content of satellite aerosol information. Second, we quantify the gain of AOD estimation in log space versus linear space in terms of accuracy, AOD distribution and number of successful retrievals. Finally, we evaluate the accuracy improvement of simultaneous AOD and surface reflectance retrieval as a function of the regions covered by the Meteosat Earth's disk.</p>\",\"PeriodicalId\":50734,\"journal\":{\"name\":\"Atmospheric Science Letters\",\"volume\":\"25 3\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/asl.1199\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmospheric Science Letters\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/asl.1199\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Science Letters","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/asl.1199","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

卫星遥感使大空间尺度的大气气溶胶研究成为可能,地球静止平台使亚日频率的大气气溶胶研究成为可能。通过使用稳健的数值反演方法(如广泛使用的最优估计(OE)理论),可以利用地球静止数据进行高时间分辨率气溶胶观测。使用地球静止轨道卫星的瞬时气溶胶和表面气溶胶检索(iAERUS-GEO)算法就是这种情况,该算法基于简单的 OE 方法实施和 Levenberg-Marquardt 方法相结合,成功地检索了 Meteosat 第二代气象卫星的气溶胶光学深度(AOD)图。然而,OE 提供的多种更先进的可能性所带来的反演性能的确切提高,在目前的文献中还没有很好的记录。在此背景下,本文对 OE 进行了定量评估,以改进 iAERUS-GEO 算法。为此,我们利用 iAERUS-GEO 使用不同 OE 实施检索的 AOD 地图以及作为参考数据的地基观测数据进行了一系列综合实验。首先,我们根据卫星气溶胶信息的内容,评估了卫星观测和先验信息在反演过程中的不同重要性。其次,我们从精度、AOD 分布和成功检索次数等方面量化了对数空间与线性空间 AOD 估计的增益。最后,我们评估了同时进行 AOD 和地表反射率检索的精度提高情况,并将其作为气象卫星地球磁盘所覆盖区域的函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Quantitative assessment of the potential of optimal estimation for aerosol retrieval from geostationary weather satellites in the frame of the iAERUS-GEO algorithm

Satellite remote sensing enables the study of atmospheric aerosols at large spatial scales, with geostationary platforms making this possible at sub-daily frequencies. High-temporal-resolution aerosol observations can be made from geostationary data by using robust numerical inversion methods such as the widely-used optimal estimation (OE) theory. This is the case of the instantaneous Aerosol and surfacE Retrieval Using Satellites in GEOstationary orbit (iAERUS-GEO) algorithm, which successfully retrieves aerosol optical depth (AOD) maps from the Meteosat Second Generation weather satellite based on a simple implementation of the OE approach combined with the Levenberg–Marquardt method. However, the exact gain in inversion performances that can be obtained from the multiple and more advanced possibilities offered by OE is not well documented in the current literature. Against this background, this article presents the quantitative assessment of OE for the future improvement of the iAERUS-GEO algorithm. To this end, we use a series of comprehensive experiments based on AOD maps retrieved by iAERUS-GEO using different OE implementations, and ground-based observations used as reference data. First, we assess the varying importance in the inversion process of satellite observations and a priori information according to the content of satellite aerosol information. Second, we quantify the gain of AOD estimation in log space versus linear space in terms of accuracy, AOD distribution and number of successful retrievals. Finally, we evaluate the accuracy improvement of simultaneous AOD and surface reflectance retrieval as a function of the regions covered by the Meteosat Earth's disk.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Atmospheric Science Letters
Atmospheric Science Letters METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
4.90
自引率
3.30%
发文量
73
审稿时长
>12 weeks
期刊介绍: Atmospheric Science Letters (ASL) is a wholly Open Access electronic journal. Its aim is to provide a fully peer reviewed publication route for new shorter contributions in the field of atmospheric and closely related sciences. Through its ability to publish shorter contributions more rapidly than conventional journals, ASL offers a framework that promotes new understanding and creates scientific debate - providing a platform for discussing scientific issues and techniques. We encourage the presentation of multi-disciplinary work and contributions that utilise ideas and techniques from parallel areas. We particularly welcome contributions that maximise the visualisation capabilities offered by a purely on-line journal. ASL welcomes papers in the fields of: Dynamical meteorology; Ocean-atmosphere systems; Climate change, variability and impacts; New or improved observations from instrumentation; Hydrometeorology; Numerical weather prediction; Data assimilation and ensemble forecasting; Physical processes of the atmosphere; Land surface-atmosphere systems.
期刊最新文献
Issue Information Change detection of the Köppen climate zones in Southeastern Europe Issue Information Are convection-permitting climate projections reliable for urban planning over Africa? A case study of Johannesburg Diurnal asymmetry of surface albedo in a semi-arid grassland over the China's Loess Plateau
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1