泥石流崩塌的控制因素:加利福尼亚州和内华达州的白山

IF 5.8 2区 工程技术 Q1 ENGINEERING, GEOLOGICAL Landslides Pub Date : 2024-01-15 DOI:10.1007/s10346-023-02207-3
Lauren Herbert, Paul Santi, Alex Densmore
{"title":"泥石流崩塌的控制因素:加利福尼亚州和内华达州的白山","authors":"Lauren Herbert, Paul Santi, Alex Densmore","doi":"10.1007/s10346-023-02207-3","DOIUrl":null,"url":null,"abstract":"<p>The process by which debris flows shift from an active channel and branch out into new transport or depositional areas is termed “avulsion.” They pose serious risks for structures and populations on debris-flow fans, yet avulsion mechanisms are relatively unknown and unaccounted for in hazard assessments, as compared to avulsions of rivers and streams, which are better understood. This study analyzes six debris-flow fans in the White Mountains of California and Nevada to identify relationships between avulsion locations and channel characteristics, constrain the controlling factors on avulsion, assess the probability that avulsion will occur at specified locations, and develop a method to predict avulsion locations. A database of avulsion locations and their channel characteristics was compiled in the field. These were compared to the characteristics of other positions on the fan surface that show evidence of debris flows that did not avulse through stepwise, binary logistic regression. Results indicate that two-thirds of avulsion likelihood can be attributed to the percentage of boulders at the site, slope angle, channel width, and the ratio between flow thickness and average slope at the avulsion location. The accuracy of this model can be improved when it accounts for the presence of a coarse channel plug, which increases the likelihood of avulsion. Application of the model is demonstrated by runout simulations with forced avulsions from modeled channel plugs.</p>","PeriodicalId":17938,"journal":{"name":"Landslides","volume":"17 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Controls on debris-flow avulsions: White Mountains of California and Nevada\",\"authors\":\"Lauren Herbert, Paul Santi, Alex Densmore\",\"doi\":\"10.1007/s10346-023-02207-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The process by which debris flows shift from an active channel and branch out into new transport or depositional areas is termed “avulsion.” They pose serious risks for structures and populations on debris-flow fans, yet avulsion mechanisms are relatively unknown and unaccounted for in hazard assessments, as compared to avulsions of rivers and streams, which are better understood. This study analyzes six debris-flow fans in the White Mountains of California and Nevada to identify relationships between avulsion locations and channel characteristics, constrain the controlling factors on avulsion, assess the probability that avulsion will occur at specified locations, and develop a method to predict avulsion locations. A database of avulsion locations and their channel characteristics was compiled in the field. These were compared to the characteristics of other positions on the fan surface that show evidence of debris flows that did not avulse through stepwise, binary logistic regression. Results indicate that two-thirds of avulsion likelihood can be attributed to the percentage of boulders at the site, slope angle, channel width, and the ratio between flow thickness and average slope at the avulsion location. The accuracy of this model can be improved when it accounts for the presence of a coarse channel plug, which increases the likelihood of avulsion. Application of the model is demonstrated by runout simulations with forced avulsions from modeled channel plugs.</p>\",\"PeriodicalId\":17938,\"journal\":{\"name\":\"Landslides\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Landslides\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s10346-023-02207-3\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Landslides","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s10346-023-02207-3","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

摘要

泥石流从活动河道转向新的运输或沉积区域的过程被称为 "崩落"。泥石流对泥石流扇上的建筑物和居民构成严重威胁,但与人们了解较多的河流和溪流的崩塌相比,泥石流扇的崩塌机制相对未知,在危害评估中也未被考虑在内。本研究分析了加利福尼亚州和内华达州白山的六个碎屑流扇,以确定崩蚀位置与河道特征之间的关系,限制崩蚀的控制因素,评估在指定位置发生崩蚀的概率,并开发一种预测崩蚀位置的方法。在实地编制了一个关于崩塌地点及其河道特征的数据库。通过逐步二元逻辑回归法,将这些特征与扇面上有证据表明发生过泥石流但未发生崩塌的其他位置的特征进行比较。结果表明,三分之二的崩塌可能性可归因于崩塌地点的巨石比例、坡角、河道宽度以及崩塌地点的水流厚度与平均坡度之比。如果考虑到粗河道堵塞的存在,这一模型的准确性就会提高,因为粗河道堵塞会增加河道崩塌的可能性。该模型的应用通过对模型河道堵塞强制崩蚀的冲出模拟进行了演示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Controls on debris-flow avulsions: White Mountains of California and Nevada

The process by which debris flows shift from an active channel and branch out into new transport or depositional areas is termed “avulsion.” They pose serious risks for structures and populations on debris-flow fans, yet avulsion mechanisms are relatively unknown and unaccounted for in hazard assessments, as compared to avulsions of rivers and streams, which are better understood. This study analyzes six debris-flow fans in the White Mountains of California and Nevada to identify relationships between avulsion locations and channel characteristics, constrain the controlling factors on avulsion, assess the probability that avulsion will occur at specified locations, and develop a method to predict avulsion locations. A database of avulsion locations and their channel characteristics was compiled in the field. These were compared to the characteristics of other positions on the fan surface that show evidence of debris flows that did not avulse through stepwise, binary logistic regression. Results indicate that two-thirds of avulsion likelihood can be attributed to the percentage of boulders at the site, slope angle, channel width, and the ratio between flow thickness and average slope at the avulsion location. The accuracy of this model can be improved when it accounts for the presence of a coarse channel plug, which increases the likelihood of avulsion. Application of the model is demonstrated by runout simulations with forced avulsions from modeled channel plugs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Landslides
Landslides 地学-地球科学综合
CiteScore
13.60
自引率
14.90%
发文量
191
审稿时长
>12 weeks
期刊介绍: Landslides are gravitational mass movements of rock, debris or earth. They may occur in conjunction with other major natural disasters such as floods, earthquakes and volcanic eruptions. Expanding urbanization and changing land-use practices have increased the incidence of landslide disasters. Landslides as catastrophic events include human injury, loss of life and economic devastation and are studied as part of the fields of earth, water and engineering sciences. The aim of the journal Landslides is to be the common platform for the publication of integrated research on landslide processes, hazards, risk analysis, mitigation, and the protection of our cultural heritage and the environment. The journal publishes research papers, news of recent landslide events and information on the activities of the International Consortium on Landslides. - Landslide dynamics, mechanisms and processes - Landslide risk evaluation: hazard assessment, hazard mapping, and vulnerability assessment - Geological, Geotechnical, Hydrological and Geophysical modeling - Effects of meteorological, hydrological and global climatic change factors - Monitoring including remote sensing and other non-invasive systems - New technology, expert and intelligent systems - Application of GIS techniques - Rock slides, rock falls, debris flows, earth flows, and lateral spreads - Large-scale landslides, lahars and pyroclastic flows in volcanic zones - Marine and reservoir related landslides - Landslide related tsunamis and seiches - Landslide disasters in urban areas and along critical infrastructure - Landslides and natural resources - Land development and land-use practices - Landslide remedial measures / prevention works - Temporal and spatial prediction of landslides - Early warning and evacuation - Global landslide database
期刊最新文献
Typical characteristics and causes of giant landslides in the upper reaches of the Yellow River, China Advancing reservoir landslide stability assessment via TS-InSAR and airborne LiDAR observations in the Daping landslide group, Three Gorges Reservoir Area, China Preliminary analysis of the wildfire on March 15, 2024, and the following post-fire debris flows in Yajiang County, Sichuan, China A new remote-sensing-based volcanic debris avalanche database of Northwest Argentina (Central Andes) A massive lateral moraine collapse triggered the 2023 South Lhonak Lake outburst flood, Sikkim Himalayas
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1