{"title":"日本对流系统内平衡液滴大小分布的三维结构","authors":"Takashi Unuma","doi":"10.2151/sola.2024-007","DOIUrl":null,"url":null,"abstract":"</p><p>This study investigated three-dimensional structure of an equilibrium drop size distribution within a convective system that spawned heavy rainfall over northern Kyushu in western Japan on 10 July 2023. Ground-based optical disdrometer observations showed that the drop size distribution shape became bimodal (the peaks are at 0.7 and 1.0 mm in diameter) and then reached an equilibrium state during the rapid increase in precipitation intensity. Analyses of vertical profiles of polarimetric measurements showed that within the convective system collisional coalescence was dominant mainly at 1.5-4 km height, whereas collisional breakup was dominant below 1.5 km height. These processes were inferred to enhance the precipitation intensity. The equilibrium drop size distribution continued at least one minute during the event, and its spatial scale, diagnosed by a radar-derived parameter to be several kilometers, suggested that the equilibrium drop size distribution was a meso-γ-scale phenomenon.</p>\n<p></p>","PeriodicalId":49501,"journal":{"name":"Sola","volume":"19 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Three-dimensional structure of an equilibrium drop size distribution within a convective system in Japan\",\"authors\":\"Takashi Unuma\",\"doi\":\"10.2151/sola.2024-007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"</p><p>This study investigated three-dimensional structure of an equilibrium drop size distribution within a convective system that spawned heavy rainfall over northern Kyushu in western Japan on 10 July 2023. Ground-based optical disdrometer observations showed that the drop size distribution shape became bimodal (the peaks are at 0.7 and 1.0 mm in diameter) and then reached an equilibrium state during the rapid increase in precipitation intensity. Analyses of vertical profiles of polarimetric measurements showed that within the convective system collisional coalescence was dominant mainly at 1.5-4 km height, whereas collisional breakup was dominant below 1.5 km height. These processes were inferred to enhance the precipitation intensity. The equilibrium drop size distribution continued at least one minute during the event, and its spatial scale, diagnosed by a radar-derived parameter to be several kilometers, suggested that the equilibrium drop size distribution was a meso-γ-scale phenomenon.</p>\\n<p></p>\",\"PeriodicalId\":49501,\"journal\":{\"name\":\"Sola\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sola\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.2151/sola.2024-007\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sola","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.2151/sola.2024-007","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Three-dimensional structure of an equilibrium drop size distribution within a convective system in Japan
This study investigated three-dimensional structure of an equilibrium drop size distribution within a convective system that spawned heavy rainfall over northern Kyushu in western Japan on 10 July 2023. Ground-based optical disdrometer observations showed that the drop size distribution shape became bimodal (the peaks are at 0.7 and 1.0 mm in diameter) and then reached an equilibrium state during the rapid increase in precipitation intensity. Analyses of vertical profiles of polarimetric measurements showed that within the convective system collisional coalescence was dominant mainly at 1.5-4 km height, whereas collisional breakup was dominant below 1.5 km height. These processes were inferred to enhance the precipitation intensity. The equilibrium drop size distribution continued at least one minute during the event, and its spatial scale, diagnosed by a radar-derived parameter to be several kilometers, suggested that the equilibrium drop size distribution was a meso-γ-scale phenomenon.
期刊介绍:
SOLA (Scientific Online Letters on the Atmosphere) is a peer-reviewed, Open Access, online-only journal. It publishes scientific discoveries and advances in understanding in meteorology, climatology, the atmospheric sciences and related interdisciplinary areas. SOLA focuses on presenting new and scientifically rigorous observations, experiments, data analyses, numerical modeling, data assimilation, and technical developments as quickly as possible. It achieves this via rapid peer review and publication of research letters, published as Regular Articles.
Published and supported by the Meteorological Society of Japan, the journal follows strong research and publication ethics principles. Most manuscripts receive a first decision within one month and a decision upon resubmission within a further month. Accepted articles are then quickly published on the journal’s website, where they are easily accessible to our broad audience.