A. A. Ulyankina, A. D. Tsarenko, T. A. Molodtsova, L. N. Fesenko, N. V. Smirnova
{"title":"在氯化物溶液中电化学合成用于环境光催化的氧化钨","authors":"A. A. Ulyankina, A. D. Tsarenko, T. A. Molodtsova, L. N. Fesenko, N. V. Smirnova","doi":"10.1134/s1023193523120157","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstrac</h3><p>t—The electrochemical behavior of tungsten in chloride electrolytes with various cationic compositions (Na<sup>+</sup>, K<sup>+</sup>, Li<sup>+</sup>, <span>\\({\\text{NH}}_{4}^{ + }\\)</span>) under the action of pulse alternating current is studied. The decisive influence of the nature of the electrolyte on the phase composition of the resulting dispersed products is shown. The use of NH<sub>4</sub>Cl provides the formation of pure crystalline WO<sub>3</sub> with a particle sized 30–35 nm. The photoelectrochemical activity of the synthesized WO<sub>3</sub> in a sulfuric acid medium under simulated solar radiation is studied. The addition of glycerol to H<sub>2</sub>SO<sub>4</sub> causes a cathodic shift in the oxidation onset potential by 0.25 V and a three-fold increase in the maximal photocurrent density. The WO<sub>3</sub>/FTO-photoanode as part of a flow-through photocatalytic fuel cell (with glycerol as fuel and air-breathing Pt/C-cathode) showed excellent stability in acidic environment and the maximal power density of 64.0 μW cm<sup>–2</sup>.</p>","PeriodicalId":760,"journal":{"name":"Russian Journal of Electrochemistry","volume":"9 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrochemical Synthesis of Tungsten Oxide in Chloride Solutions for Environmental Photocatalysis\",\"authors\":\"A. A. Ulyankina, A. D. Tsarenko, T. A. Molodtsova, L. N. Fesenko, N. V. Smirnova\",\"doi\":\"10.1134/s1023193523120157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstrac</h3><p>t—The electrochemical behavior of tungsten in chloride electrolytes with various cationic compositions (Na<sup>+</sup>, K<sup>+</sup>, Li<sup>+</sup>, <span>\\\\({\\\\text{NH}}_{4}^{ + }\\\\)</span>) under the action of pulse alternating current is studied. The decisive influence of the nature of the electrolyte on the phase composition of the resulting dispersed products is shown. The use of NH<sub>4</sub>Cl provides the formation of pure crystalline WO<sub>3</sub> with a particle sized 30–35 nm. The photoelectrochemical activity of the synthesized WO<sub>3</sub> in a sulfuric acid medium under simulated solar radiation is studied. The addition of glycerol to H<sub>2</sub>SO<sub>4</sub> causes a cathodic shift in the oxidation onset potential by 0.25 V and a three-fold increase in the maximal photocurrent density. The WO<sub>3</sub>/FTO-photoanode as part of a flow-through photocatalytic fuel cell (with glycerol as fuel and air-breathing Pt/C-cathode) showed excellent stability in acidic environment and the maximal power density of 64.0 μW cm<sup>–2</sup>.</p>\",\"PeriodicalId\":760,\"journal\":{\"name\":\"Russian Journal of Electrochemistry\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Journal of Electrochemistry\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1134/s1023193523120157\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Electrochemistry","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1134/s1023193523120157","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
Electrochemical Synthesis of Tungsten Oxide in Chloride Solutions for Environmental Photocatalysis
Abstrac
t—The electrochemical behavior of tungsten in chloride electrolytes with various cationic compositions (Na+, K+, Li+, \({\text{NH}}_{4}^{ + }\)) under the action of pulse alternating current is studied. The decisive influence of the nature of the electrolyte on the phase composition of the resulting dispersed products is shown. The use of NH4Cl provides the formation of pure crystalline WO3 with a particle sized 30–35 nm. The photoelectrochemical activity of the synthesized WO3 in a sulfuric acid medium under simulated solar radiation is studied. The addition of glycerol to H2SO4 causes a cathodic shift in the oxidation onset potential by 0.25 V and a three-fold increase in the maximal photocurrent density. The WO3/FTO-photoanode as part of a flow-through photocatalytic fuel cell (with glycerol as fuel and air-breathing Pt/C-cathode) showed excellent stability in acidic environment and the maximal power density of 64.0 μW cm–2.
期刊介绍:
Russian Journal of Electrochemistry is a journal that covers all aspects of research in modern electrochemistry. The journal welcomes submissions in English or Russian regardless of country and nationality of authors.