{"title":"费米β衰变核矩阵元素的高阶打破等空间对称性修正","authors":"L. Xayavong, N. A. Smirnova","doi":"10.1103/physrevc.109.014317","DOIUrl":null,"url":null,"abstract":"Within the nuclear shell model, we derive the exact expression for the isospin-symmetry breaking correction to the nuclear matrix element of Fermi <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>β</mi></math> decays. Based on a perturbation expansion in small quantities, such as the deviation of the overlap integral between proton and neutron radial wave functions from unity and of the transition density from its isospin-symmetry value, we demonstrate that <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>δ</mi><mi>C</mi></msub></math> can be obtained as a sum of six terms. These terms comprise two leading order (LO) terms, two next-to-leading order (NLO) terms, one next-to-next-to-leading order (NNLO) term, and one next-to-next-to-next-to-leading order (NNNLO) term. While the first two terms have been considered in a series of shell-model calculations [J. C. Hardy and I. S. Towner, <span>Phys. Rev. C</span> <b>102</b>, 045501 (2020), and references therein], the remaining four terms have been neglected. A numerical calculation has been carried out for 24 superallowed <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msup><mn>0</mn><mo>+</mo></msup><mo>→</mo><msup><mn>0</mn><mo>+</mo></msup></mrow></math> transitions (18 isotriplets and six isoquintets) and three non-<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msup><mn>0</mn><mo>+</mo></msup><mo>→</mo><msup><mn>0</mn><mo>+</mo></msup></mrow></math> transitions, across the <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>p</mi></math> to <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>p</mi><mi>f</mi></mrow></math> shells. For most <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msup><mn>0</mn><mo>+</mo></msup><mo>→</mo><msup><mn>0</mn><mo>+</mo></msup></mrow></math> transitions, the higher-order contribution is of the order <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msup><mn>10</mn><mrow><mo>−</mo><mn>3</mn></mrow></msup><mo>%</mo></mrow></math> or smaller, well below the typical theoretical errors quantified within the shell model with Woods-Saxon radial wave functions given in the reference cited above. However, for specific cases such as <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mmultiscripts><mi>Br</mi><mprescripts></mprescripts><none></none><mn>70</mn></mmultiscripts></math> and <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mmultiscripts><mi>Rb</mi><mprescripts></mprescripts><none></none><mn>74</mn></mmultiscripts></math>, where weakly bound effect dominates, it increases considerably, becoming comparable to or even exceeding the errors in the isospin mixing component of the LO terms. In the cases of <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mmultiscripts><mi>Mg</mi><mprescripts></mprescripts><none></none><mn>20</mn></mmultiscripts></math> and <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mmultiscripts><mi>Fe</mi><mprescripts></mprescripts><none></none><mn>48</mn></mmultiscripts></math>, as well as in non-<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msup><mn>0</mn><mo>+</mo></msup><mo>→</mo><msup><mn>0</mn><mo>+</mo></msup></mrow></math> transitions, the higher-order contribution becomes more substantial. Notably, it reaches as large as <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mo>−</mo><mn>4.460</mn><mo>%</mo></mrow></math> in <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mmultiscripts><mi>Cl</mi><mprescripts></mprescripts><none></none><mn>31</mn></mmultiscripts></math> and <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mo>−</mo><mn>2.027</mn><mo>%</mo></mrow></math> in <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mmultiscripts><mi>Cl</mi><mprescripts></mprescripts><none></none><mn>32</mn></mmultiscripts></math>, due to the concurrent effect of the weakly bound and strong isospin mixing in their daughter nuclei. In contrast, for <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mmultiscripts><mi mathvariant=\"normal\">P</mi><mprescripts></mprescripts><none></none><mn>26</mn></mmultiscripts></math>, the NLO terms, despite their substantial magnitude, effectively cancel each other out due to their opposite signs.","PeriodicalId":20122,"journal":{"name":"Physical Review C","volume":"15 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Higher-order isospin-symmetry-breaking corrections to nuclear matrix elements of Fermiβdecays\",\"authors\":\"L. Xayavong, N. A. Smirnova\",\"doi\":\"10.1103/physrevc.109.014317\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Within the nuclear shell model, we derive the exact expression for the isospin-symmetry breaking correction to the nuclear matrix element of Fermi <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>β</mi></math> decays. Based on a perturbation expansion in small quantities, such as the deviation of the overlap integral between proton and neutron radial wave functions from unity and of the transition density from its isospin-symmetry value, we demonstrate that <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>δ</mi><mi>C</mi></msub></math> can be obtained as a sum of six terms. These terms comprise two leading order (LO) terms, two next-to-leading order (NLO) terms, one next-to-next-to-leading order (NNLO) term, and one next-to-next-to-next-to-leading order (NNNLO) term. While the first two terms have been considered in a series of shell-model calculations [J. C. Hardy and I. S. Towner, <span>Phys. Rev. C</span> <b>102</b>, 045501 (2020), and references therein], the remaining four terms have been neglected. A numerical calculation has been carried out for 24 superallowed <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><msup><mn>0</mn><mo>+</mo></msup><mo>→</mo><msup><mn>0</mn><mo>+</mo></msup></mrow></math> transitions (18 isotriplets and six isoquintets) and three non-<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><msup><mn>0</mn><mo>+</mo></msup><mo>→</mo><msup><mn>0</mn><mo>+</mo></msup></mrow></math> transitions, across the <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>p</mi></math> to <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>p</mi><mi>f</mi></mrow></math> shells. For most <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><msup><mn>0</mn><mo>+</mo></msup><mo>→</mo><msup><mn>0</mn><mo>+</mo></msup></mrow></math> transitions, the higher-order contribution is of the order <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><msup><mn>10</mn><mrow><mo>−</mo><mn>3</mn></mrow></msup><mo>%</mo></mrow></math> or smaller, well below the typical theoretical errors quantified within the shell model with Woods-Saxon radial wave functions given in the reference cited above. However, for specific cases such as <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mmultiscripts><mi>Br</mi><mprescripts></mprescripts><none></none><mn>70</mn></mmultiscripts></math> and <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mmultiscripts><mi>Rb</mi><mprescripts></mprescripts><none></none><mn>74</mn></mmultiscripts></math>, where weakly bound effect dominates, it increases considerably, becoming comparable to or even exceeding the errors in the isospin mixing component of the LO terms. In the cases of <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mmultiscripts><mi>Mg</mi><mprescripts></mprescripts><none></none><mn>20</mn></mmultiscripts></math> and <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mmultiscripts><mi>Fe</mi><mprescripts></mprescripts><none></none><mn>48</mn></mmultiscripts></math>, as well as in non-<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><msup><mn>0</mn><mo>+</mo></msup><mo>→</mo><msup><mn>0</mn><mo>+</mo></msup></mrow></math> transitions, the higher-order contribution becomes more substantial. Notably, it reaches as large as <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mo>−</mo><mn>4.460</mn><mo>%</mo></mrow></math> in <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mmultiscripts><mi>Cl</mi><mprescripts></mprescripts><none></none><mn>31</mn></mmultiscripts></math> and <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mo>−</mo><mn>2.027</mn><mo>%</mo></mrow></math> in <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mmultiscripts><mi>Cl</mi><mprescripts></mprescripts><none></none><mn>32</mn></mmultiscripts></math>, due to the concurrent effect of the weakly bound and strong isospin mixing in their daughter nuclei. In contrast, for <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mmultiscripts><mi mathvariant=\\\"normal\\\">P</mi><mprescripts></mprescripts><none></none><mn>26</mn></mmultiscripts></math>, the NLO terms, despite their substantial magnitude, effectively cancel each other out due to their opposite signs.\",\"PeriodicalId\":20122,\"journal\":{\"name\":\"Physical Review C\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review C\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevc.109.014317\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review C","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevc.109.014317","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
摘要
在核壳模型中,我们推导出了费米 β 衰变核矩阵元素的等空间对称性破缺修正的精确表达式。基于小量的扰动展开,例如质子和中子径向波函数的重叠积分与统一值的偏差,以及跃迁密度与其等空间对称值的偏差,我们证明δC 可以作为六个项的总和来获得。这些项包括两个前导阶(LO)项、两个次前导阶(NLO)项、一个次下前导阶(NNLO)项和一个次下前导阶(NNNLO)项。虽然前两个项已经在一系列壳模型计算中得到了考虑 [J. C. Hardy 和 I. S. S. J.C. Hardy 和 I. S. Towner,Phys. Rev. C 102, 045501 (2020),以及其中的参考文献],其余四个项则被忽略。我们对 24 个超允许的 0+→0+ 转变(18 个等三元组和 6 个等五元组)和 3 个非 0+→0+ 转变进行了数值计算,横跨 p 至 pf 壳。对于大多数 0+→0+ 转变,高阶贡献率约为 10-3% 或更小,远低于上文引用的伍兹-撒克逊径向波函数壳模型量化的典型理论误差。然而,在 Br70 和 Rb74 等弱束缚效应占主导地位的特定情况下,高阶贡献会大幅增加,与 LO 项中等空混合分量的误差相当,甚至超过。在 Mg20 和 Fe48 的情况下,以及在非 0+→0+ 转变中,高阶贡献变得更为可观。值得注意的是,在 Cl31 和 Cl32 中,由于它们的子核中弱束缚和强异空间混合的同时作用,高阶贡献率分别达到了-4.460%和-2.027%。相比之下,对于 P26,尽管 NLO 项的量级很大,但由于它们的符号相反,因此实际上相互抵消了。
Higher-order isospin-symmetry-breaking corrections to nuclear matrix elements of Fermiβdecays
Within the nuclear shell model, we derive the exact expression for the isospin-symmetry breaking correction to the nuclear matrix element of Fermi decays. Based on a perturbation expansion in small quantities, such as the deviation of the overlap integral between proton and neutron radial wave functions from unity and of the transition density from its isospin-symmetry value, we demonstrate that can be obtained as a sum of six terms. These terms comprise two leading order (LO) terms, two next-to-leading order (NLO) terms, one next-to-next-to-leading order (NNLO) term, and one next-to-next-to-next-to-leading order (NNNLO) term. While the first two terms have been considered in a series of shell-model calculations [J. C. Hardy and I. S. Towner, Phys. Rev. C102, 045501 (2020), and references therein], the remaining four terms have been neglected. A numerical calculation has been carried out for 24 superallowed transitions (18 isotriplets and six isoquintets) and three non- transitions, across the to shells. For most transitions, the higher-order contribution is of the order or smaller, well below the typical theoretical errors quantified within the shell model with Woods-Saxon radial wave functions given in the reference cited above. However, for specific cases such as and , where weakly bound effect dominates, it increases considerably, becoming comparable to or even exceeding the errors in the isospin mixing component of the LO terms. In the cases of and , as well as in non- transitions, the higher-order contribution becomes more substantial. Notably, it reaches as large as in and in , due to the concurrent effect of the weakly bound and strong isospin mixing in their daughter nuclei. In contrast, for , the NLO terms, despite their substantial magnitude, effectively cancel each other out due to their opposite signs.
期刊介绍:
Physical Review C (PRC) is a leading journal in theoretical and experimental nuclear physics, publishing more than two-thirds of the research literature in the field.
PRC covers experimental and theoretical results in all aspects of nuclear physics, including:
Nucleon-nucleon interaction, few-body systems
Nuclear structure
Nuclear reactions
Relativistic nuclear collisions
Hadronic physics and QCD
Electroweak interaction, symmetries
Nuclear astrophysics